Thesis work summary

Luca Zappaterra, Davide Pinci, 25th July 2024

Table of contents

1. Data pre-processing and calibration

- 1.1. Normalisation
- 1.2. Gain non-uniformity correction
- 1.3. Light Yield stability with humidity

2. Analysis of low energy nuclear recoils from AmBe

- 2.1. AmBe excess selection
- 2.2. Directionality evaluation and Monte Carlo validation
- 2.3. 3D range reconstruction with PMTs data

1. Data pre-processing

1. Datasets infomation

Alias	Runs range	Date range [mm/dd]	Eff. Exposure [h]
AmBe_p1	$23820 \div 23984$	$08/02 \div 08/03$	16.9
AmBe + Fe	$23988 \div 24022$	$08/03 \div 08/03$	2.1
$AmBe_p2$	$24023 \div 24328$	$08/03 \div 08/04$	31.0
Stability	$25486 \div 25772$	$09/26 \div 09/29$	10.5
Bkg	$27322 \div 27844$	$10/07 \div 10/10$	56.6
Bkg_stability	27512	$10/09 \div 10/09$	

• AmBe_p1 + AmBe_p2 = AmBe from now on

1.1. Normalisation

• Normalisation is performed dividing for the total time of the considered runs.

L. Zappaterra, D. Pinci, 25th July 2024

normalised data

1.1. Normalisation

• An idea of the energy scale is given from the AmBe+Fe normalised spectrum

L. Zappaterra, D. Pinci, 25th July 2024

normalised data

1.2. Gain non-uniformity correction

 Since we experience gain nonuniformity inside the detector we should correct for this using the correction map provided form Davide.

L. Zappaterra, D. Pinci, 25th July 2024

Gain non-uniformity correction map

1.2. Gain non-uniformity correction

SIDENOTE: border cuts

source: the cut efficiently removes the excess around 5k ADU.

L. Zappaterra, D. Pinci, 25th July 2024

• Removing sufficiently short clusters on borders is imperative, it is particularly evident with Iron

1.3a. Humidity trend during AmBe

related to humidity, hence we can exploit this relation to calibrate in energy.

L. Zappaterra, D. Pinci, 25th July 2024

• Humidity was decreasing during the AmBe Data taking and sc_integral should be linearly

1.3b. Light Yield calibration with humidity

Strategy:

- Fit the iron peak run by run for a stability dataset.
- Plot it vs. Humidity.
- Fit the linear relation to obtain the calibration function at each humidity value.
- Calibrate sc_integral of each using the corresponding humidity value for the current run.

[12000 · [ND] ă

1.3c. Light Yield inter-calibration (AmBe)

Oxygen?). Physics makes the rules \rightarrow rescale all to match the correct peak.

L. Zappaterra, D. Pinci, 25th July 2024

• Applying the calibration function to data taken in different timeframes results in a shifted peak from the expected one, probably related to other parameters of the detector (pressure /

1.3c. Light Yield inter-calibration (Bkg)

Same concept with background but opposite behaviour

1.3c. Light Yield inter-calibration (pressure hypothesis)

- Opposite pressure trends of AmBe and Bkg wrt Stability.
- Relation between LY and pressure is known from overground studies; variation of 0.6% LY/mbar
- Pressure variation could explain:
 - 4.8% of 6.8% (AmBe)
 - 2.4% of 8.5% (Bkg)

Pressure trends for different datasets

Pre-Processing results: AmBe – Bkg

Pre-Processing results: Iron peak

L. Zappaterra, D. Pinci, 25th July 2024

(AmBe + Fe) - AmBe

2. Low energy NRs analysis

L. Zappaterra, D. Pinci, 25th July 2024

6 [ADU/px]

2.1. AmBe excess selection - Mowed clusters

• We can use the Trigger Time Tag (**TTT**) to identify the clusters that were "mowed" from the pixels activation / deactivation.

Strategy:

- Convert TTT in the number of active pixels
 (TTT_{eqpx})
- Retrieve $y_{\mbox{min}}$ and $y_{\mbox{max}}$ for a cluster from the camera data
- Check if $y_{min} < TTT_{eqpx} < y_{max}$ for at least one TTT_{eqpx} and remove the cluster from the sample in such case.

L. Zappaterra, D. Pinci, 25th July 2024

2.2a. Directionality evaluation

- Re-implementation of the Principal Component Analysis (**PCA**) with 2 parameters on the most intense part of the clusters to remove shadow and **extract the clusters' axes**.
- Use always the **biggest eigenvector** to compute the angle with respect to the \hat{x} direction.
- Then, we can impose the head-tail, since we know this excess comes from the AmBe source (right side of the image reference frame), and flip all the angles between ±90° by 180°.
- Do the same on the Bkg dataset and compare to see if there are differences.

2.2a. Directionality evaluation - Examples

2.2a. Directionality evaluation - Examples

		_			_		
					_		
		-			_		
-					_		
		_			_		
		_			_		
					_		
7	7	7	' ()			
						2	6

2.2a. Directionality evaluation - AmBe vs. Bkg

- 0.012 • Apply the same method to clusters in the selected region with and without AmBe source. 0.010
- Excess of vertical clusters in Bkg 0.008 **sample** (here the Bkg Dataset has Density 900'0 been expanded to collect more clusters).
- Excess of horizontal clusters in AmBe sample.
- Is this last excess expected?

0.000

0.002

0.004

2.2b. Monte Carlo validation

Strategy:

- Simulate a **fake nuclear recoil inside the detector frame**.
- Model the interaction as a simple elastic scattering.
- Project the angle on the GEM plane and compare with the observed distribution.

2.2b. MC validation - LAB kinematics

- We are interest in $heta_{W'}$ to retrieve it:

$$\theta_W = \arctan \frac{\sin \gamma}{1 + \cos \gamma}$$

 $\mp \pi$ since the source should be on the left

2.2b. MC validation - 3D simulation

Simulated nuclear recoil with $\theta = -27.4^{\circ}$ and $\phi = 111.4^{\circ}$ Angles: XY: 175.92°, ZX: -98.44°, ZY: 154.32° Camera view Top view

2.2b. MC validation - 3D simulation

Simulated nuclear recoil with $\theta = -1.8^{\circ}$ and $\phi = 213.2^{\circ}$ Angles: XY: -177.15°, ZX: -150.59°, ZY: -178.39° Camera view

2.2c. MC validation - Simulated angle

The vertical region is not perfectly matched by the AmBe sample, but Bkg is for sure flatter.

- The differences in the distributions could be due to **our angular** resolution, which is absent in the simulation.
- We can simulate it by means of a gaussian smearing, where the angular resolution (res) is multiplied times a number (fact) drawn with a Gaussian probability distribution between [-1, 1] and added to the simulated value.

$\theta_{XY}^{(smeared)} = \theta_{XY}^{(sim)} + res \times fact$

where $fact \in Gauss(0,1)$

Angular resolution = 5° :

L. Zappaterra, D. Pinci, 25th July 2024

Х

Angular resolution = 10°:

L. Zappaterra, D. Pinci, 25th July 2024

num_events=384

Angular resolution = 20° :

L. Zappaterra, D. Pinci, 25th July 2024

Angle (degrees)

num_events=384

Angular resolution = 30°:

L. Zappaterra, D. Pinci, 25th July 2024

Angular resolution = 35°:

L. Zappaterra, D. Pinci, 25th July 2024

Angular resolution = 40°:

L. Zappaterra, D. Pinci, 25th July 2024

num_events=384

Angular resolution = 45°:

L. Zappaterra, D. Pinci, 25th July 2024

num_events=384

Х

Angular resolution = 50°:

num_events=384

Angular resolution = 55° :

Angular resolution = 60° :

num_events=1388

num_events=384

Angular resolution = 70°:

L. Zappaterra, D. Pinci, 25th July 2024

num_events=384

Х

Angular resolution = 80°:

- (**ToT**) that we can find in the waveforms associated to a specific cluster.

• Namely: 3D range =
$$\sqrt{\text{sc_length}^2 + L_z^2}$$
, wi

have a 1:1 cluster-waveforms match, reducing the AmBe NR sample to ~350 events.

• To perform 3D range reconstruction, we should **sum in quadrature** the length we measure from the camera reco (sc_length) with the length we can reconstruct from the PMTs (L_z).

• L_z can be computed by multiplying the drift velocity (V_{drift}) to the maximum time over threshold

ith $L_z = v_{drift} \times ToT^{max}$

• To perform an analysis of this kind, only lonely nuclear recoils are considered, in order to

- and in the drift direction.
- Their sum in quadrature gives us the effective diffusion that affects ⁵⁵Fe clusters.

L. Zappaterra, D. Pinci, 25th July 2024

• Using Stability dataset, we can evaluate the diffusion that we experience on the GEM plane

- A 5.9 keV e⁻ should travel ~0.5 mm in He:CF₄.
- From the previous slide we obtain:

8.63 ± 0.9 mm

- 1 order of magnitude bigger wrt the true value.
- We will use this diffusion measurement as offsets to be subtracted to their respective physical quantity.

- Actually, we can do better.
- We can use sc_tgausssigma to track distance from the GEMs.
- From the daily calibration we can perform the previous analysis at each calibration step to extract the diffusion offsets and associating them to a mean sc_tgausssigma.
- Then, we can subtract the correct offset to each cluster by means of its sc_tgausssigma, exploiting the diffusion dependance on this variable using a square root fit.

- It is known that **diffusion of** ionisation electrons scales with the square root of the distance (in drift chambers).
- The match between the square root fit and the data points for both sc_length and Lz vs. sc_tgausssigma is a nice confirmation of the goodness of this approach.

sc_tgausssigma [ADU]

- In He:CF₄, we should see nuclear recoils from He, C or F.
- In principle, this should be reflected in the range vs energy distribution, but no evident population is visible.
- This could be due to the well known gain saturation problem that manifests when a large number of ionisation electrons reach the GEMs all at once.

- Expand Range vs Energy simulation for He NRs in He:CF4 plot using E. Marconato data which also include C and F.
- We see the gain saturation in action.

- Assume we have only He recoils.
- Fit the Energy vs Range simulation with a 2nd order polynomial function.
- With this we can extrapolate energies outside the simulated range domain and compute the "expected energy".

- There are a **small number of outliers** above 10 MeV,
- They are probably due to a wrong extrapolation of the fitted law or to an error in the range reconstruction.

Expected energy spectrum for AmBe NRs sample

• Expected vs Reco (saturated) energy distribution gives us an idea of how much each clusters' energy is corrected with this method.

Expected vs. Saturated energy distribution

• We can extract:

Saturation factor = expected energy saturated energy

• This is mostly distributed around 10-12, which is coherent with Atul claim:

"1 MeV (expected) energy NR after reconstruction appears to be between 30 - 110 keV depending on the distance from the GEMs", that correspond to a saturation factor ranging

between 9 and 33.

Energy saturation factor distribution

	 			 	_	 	 	
 	 -			 		 -	 	
		-						
	-	-	-	 -			4	
	-	-		 			4	

Results, Remarks and Conclusions

- Well defined pre-processing pipeline
 - ✓ Data normalization
 - ✓ Gain non-uniformity correction
 - \checkmark Calibration of the light yield as a function of the detector humidity).
- Sample of NRs identification in the 100 -**1000 keV expected kinetic energy region**
 - Angle computed cluster-by-cluster
 - ✓ Toy Monte Carlo validation
 - \checkmark Angular resolution evaluated around 35°/40°.

 Lonely nuclear recoils 3D range reconstruction.

 Critical considerations regarding nuclear recoils energy spectrum.

✓ Gain saturation characterisation, with energy saturation factor coherent with previous preliminary studies and simulations.

More data = better information.

Thank you for your attention!