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1. Data pre-processing
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1. Datasets infomation
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• AmBe_p1 + AmBe_p2 = AmBe from now on
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1.1. Normalisation
• Normalisation is performed dividing for the total time of the considered runs.
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1.1. Normalisation
• An idea of the energy scale is given from the AmBe+Fe normalised spectrum

X
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1.2. Gain non-uniformity correction

• Since we experience gain non-
uniformity inside the detector we 
should correct for this using the 
correction map provided form Davide.
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1.2. Gain non-uniformity correction
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SIDENOTE: border cuts
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• Removing sufficiently short clusters on borders is imperative, it is particularly evident with Iron 
source: the cut efficiently removes the excess around 5k ADU.
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1.3a. Humidity trend during AmBe
• Humidity was decreasing during the AmBe Data taking and sc_integral should be linearly 

related to humidity, hence we can exploit this relation to calibrate in energy.

9
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1.3b. Light Yield calibration with humidity
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Strategy: 

• Fit the iron peak run by run for a 
stability dataset. 

• Plot it vs. Humidity. 

• Fit the linear relation to obtain the 
calibration function at each humidity 
value. 

• Calibrate sc_integral of each using 
the corresponding humidity value for 
the current run.
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1.3c. Light Yield inter-calibration (AmBe)
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• Applying the calibration function to data taken in different timeframes results in a shifted peak 
from the expected one, probably related to other parameters of the detector (pressure / 
Oxygen?). Physics makes the rules → rescale all to match the correct peak.

+6.8%
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1.3c. Light Yield inter-calibration (Bkg)
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• Same concept with background but opposite behaviour

-8.5%
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1.3c. Light Yield inter-calibration (pressure hypothesis)
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• Opposite pressure trends of 
AmBe and Bkg wrt Stability. 

• Relation between LY and 
pressure is known from 
overground studies; 
variation of 0.6% LY/mbar 

• Pressure variation could 
explain: 

• 4.8% of 6.8% (AmBe) 

• 2.4% of 8.5% (Bkg)
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Pre-Processing results: sc_integral spectrum
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Pre-Processing results: AmBe — Bkg
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Pre-Processing results: Iron peak
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2. Low energy NRs analysis
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2.1. AmBe excess selection
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2.1. AmBe excess selection
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2.1. AmBe excess selection

20



L. Zappaterra, D. Pinci, 25th July 2024

2.1. AmBe excess selection - Mowed clusters

21

• We can use the Trigger Time Tag (TTT) to 
identify the clusters that were “mowed” from 
the pixels activation / deactivation. 

Strategy: 

• Convert TTT  in the number of active pixels 
( ) 

• Retrieve  and  for a cluster from 
the camera data 

• Check if  for at 

least one  and remove the cluster 
from the sample in such case.

TTTeqpx

ymin ymax

ymin < TTTeqpx < ymax
TTTeqpx
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2.1. AmBe excess selection

22
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2.1. AmBe excess selection

23



L. Zappaterra, D. Pinci, 25th July 2024

2.2a. Directionality evaluation
• Re-implementation of the Principal Component 

Analysis (PCA) with 2 parameters on the most 
intense part of the clusters to remove shadow 
and extract the clusters’ axes. 

• Use always the biggest eigenvector to compute 
the angle with respect to the  direction. 

• Then, we can impose the head-tail, since we 
know this excess comes from the AmBe source 
(right side of the image reference frame), and flip 
all the angles between ±90° by 180°. 

• Do the same on the Bkg dataset and compare to 
see if there are differences.

̂x

24±180° 0°
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2.2a. Directionality evaluation - Examples

25
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2.2a. Directionality evaluation - Examples
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2.2a. Directionality evaluation - AmBe vs. Bkg

27

• Apply the same method to clusters 
in the selected region with and 
without AmBe source. 

• Excess of vertical clusters in Bkg 
sample (here the Bkg Dataset has 
been expanded to collect more 
clusters). 

• Excess of horizontal clusters in 
AmBe sample. 

• Is this last excess expected?
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2.2b. Monte Carlo validation
Strategy: 

• Simulate a fake nuclear recoil 
inside the detector frame.  

• Model the interaction as a simple 
elastic scattering. 

• Project the angle on the GEM 
plane and compare with the 
observed distribution.

28

CDM frame

sin γ =
b

r + R



L. Zappaterra, D. Pinci, 25th July 2024

2.2b. MC validation - LAB kinematics
• We are interest in , to retrieve it:θW

29

LAB frame

θW = arctan
sin γ

1 + cos γ

• If b = ±(r + R)

sin γ = ± 1
cos γ = 0

θW = ± π/4⇒

 since the source should be on the left∓π
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2.2b. MC validation - 3D simulation

30

 flatφ ∈ [0,2π]

Camera-like 
angle (wrt )̂x

Angle wrt 
source wall

GEM 
plane
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2.2b. MC validation - 3D simulation
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2.2b. MC validation - 3D simulation
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2.2c. MC validation - Simulated angle

33

The vertical region is not perfectly matched by the AmBe sample, but Bkg is for sure flatter.
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2.2c. MC validation - Gaussian Smearing

34

• The differences in the distributions 
could be due to our angular 
resolution, which is absent in the 
simulation. 

• We can simulate it by means of a 
gaussian smearing, where the angular 
resolution (res) is multiplied times a 
number (fact) drawn with a Gaussian 
probability distribution between [-1, 1] 
and added to the simulated value.

θ(smeared)
XY = θ(sim)

XY + res × fact

where fact ∈ Gauss(0,1)
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2.2c. MC validation - Gaussian Smearing

X

Angular resolution = 5°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 10°:



L. Zappaterra, D. Pinci, 25th July 2024

2.2c. MC validation - Gaussian Smearing
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Angular resolution = 20°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 30°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 35°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 40°:
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2.2c. MC validation - Gaussian Smearing

X

Angular resolution = 45°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 50°:
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2.2c. MC validation - Gaussian Smearing

X

Angular resolution = 55°:
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2.2c. MC validation - Gaussian Smearing
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Angular resolution = 60°:
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2.2c. MC validation - Gaussian Smearing

X

Angular resolution = 70°:
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2.2c. MC validation - Gaussian Smearing

X

Angular resolution = 80°:
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2.3. Clusters 3D range reconstruction
• To perform 3D range reconstruction, we should sum in quadrature the length we measure 

from the camera reco (sc_length) with the length we can reconstruct from the PMTs (Lz). 

• Lz can be computed by multiplying the drift velocity (vdrift) to the maximum time over threshold 
(ToT) that we can find in the waveforms associated to a specific cluster. 

• Namely:  , with  

• To perform an analysis of this kind, only lonely nuclear recoils are considered, in order to 
have a 1:1 cluster-waveforms match, reducing the AmBe NR sample to ~350 events.

3D range = sc_length2 + L2
z Lz = vdrift × ToTmax

42
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2.3. Clusters 3D range reconstruction
• Using Stability dataset, we can evaluate the diffusion that we experience on the GEM plane 
and in the drift direction. 

• Their sum in quadrature gives us the effective diffusion that affects 55Fe clusters.

43
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2.3. Clusters 3D range reconstruction
• A 5.9 keV  should travel ~0.5 mm in 

He:CF4. 

• From the previous slide we obtain:  

 mm 

• 1 order of magnitude bigger wrt the true 
value. 

• We will use this diffusion measurement as 
offsets to be subtracted to their respective 
physical quantity.

e−

8.63 ± 0.9

44
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2.3. Clusters 3D range reconstruction
• Actually, we can do better. 

• We can use sc_tgausssigma to track 
distance from the GEMs. 

• From the daily calibration we can perform 
the previous analysis at each calibration step 
to extract the diffusion offsets and 
associating them to a mean sc_tgausssigma. 

• Then, we can subtract the correct offset to 
each cluster by means of its sc_tgausssigma, 
exploiting the diffusion dependance on this 
variable using a square root fit.

45



L. Zappaterra, D. Pinci, 25th July 2024

2.3. Clusters 3D range reconstruction

46



L. Zappaterra, D. Pinci, 25th July 2024

2.3. Clusters 3D range reconstruction

47
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2.3. Clusters 3D range reconstruction

• It is known that diffusion of 
ionisation electrons scales 
with the square root of the 
distance (in drift chambers). 

• The match between the square 
root fit and the data points for 
both sc_length and Lz vs. 
sc_tgausssigma is a nice 
confirmation of the goodness of 
this approach.

48
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2.3. Clusters 3D range reconstruction

• In He:CF4, we should see nuclear recoils 
from He, C or F. 

• In principle, this should be reflected in 
the range vs energy distribution, but no 
evident population is visible. 

• This could be due to the well known 
gain saturation problem that 
manifests when a large number of 
ionisation electrons reach the GEMs all 
at once.

49
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2.3. Clusters 3D range reconstruction
• Expand Range vs Energy simulation for He NRs in He:CF4 plot using E. Marconato data 

which also include C and F. 

• We see the gain saturation in action.

50
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2.3. Clusters 3D range reconstruction

• Assume we have only He recoils. 

• Fit the Energy vs Range 
simulation with a 2nd order 
polynomial function. 

• With this we can extrapolate 
energies outside the simulated 
range domain and compute the 
“expected energy”.

51
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2.3. Clusters 3D range reconstruction

• There are a small number of 
outliers above 10 MeV,  

• They are probably due to a 
wrong extrapolation of the fitted 
law or to an error in the range 
reconstruction.

52
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2.3. Clusters 3D range reconstruction

53

• Expected vs Reco (saturated) 
energy distribution gives us an 
idea of how much each 
clusters’ energy is corrected 
with this method.
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2.3. Clusters 3D range reconstruction
• We can extract:

54

Saturation factor =
expected energy
saturated energy

• This is mostly distributed around 
10-12, which is coherent with Atul 
claim:                                                 
“1 MeV (expected) energy NR 
after reconstruction appears 
to be between 30 - 110 keV 
depending on the distance from 
the GEMs”, that correspond to a 
saturation factor ranging 
between 9 and 33.
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Results, Remarks and Conclusions
• Well defined pre-processing pipeline  

✓Data normalization  

✓Gain non-uniformity correction 

✓Calibration of the light yield as a function of 
the detector humidity).  

• Sample of NRs identification in the 100 - 
1000 keV expected kinetic energy region 

✦Angle computed cluster-by-cluster 

✓Toy Monte Carlo validation 

✓Angular resolution evaluated around 35°/40°. 
55

• Lonely nuclear recoils 3D range 
reconstruction.  

✓Critical considerations regarding 
nuclear recoils energy spectrum. 

✓Gain saturation characterisation, with 
energy saturation factor coherent with 
previous preliminary studies and 
simulations. 

➡More data = better information.



Thank you for your attention!


