

Boosted jet tagging at the CMS experiment

Donato Troiano^{1,2}

October 8, 2024

CMS Italia 2024

1 INFN of Bari

2 University of Bari

Boosted jets tagging

Hadronic decay products of highly boosted particles are collimated.

- Particles merged in one anti- k_T jet (radius R = 0.8 \rightarrow AK8).

Identifying the particle generating the jet is a suitable task for ML:

- large number of particles;
- diverse input variables for each particle.

Evolution of boosted jets tagging at CMS

early Run 2		sta	te of art for Run 3 CMS
double-b	DeepAK8-MD	DeepDoubleX	ParticleNet-MD
			time
Model: Boosted decision Tree	1D Convolutional Neural Network (CNN)	1D CNN + Recursive NN	Dynamic Graph CNN (DGCNN)
Inputs: tracks and secondary vertices (SVs)	particle flow (PF) candidates and SVs	PF candidates and SVs	PF candidates, SVs and tracks
Outputs: • $H \rightarrow b\overline{b} vs QCD$	 X → bb̄ vs QCD X → cc̄ vs QCD 	• $X \rightarrow b\overline{b} vs QCD$ • $X \rightarrow c\overline{c} vs QCD$ • $X \rightarrow b\overline{b} vs X \rightarrow c\overline{c}$	 p(X→bb̄), p(X→cc̄), p(X→light quarks), p(X→ττ̄), p(QCD)

ParticleNet-MD

Architecture

- Graph based architecture describing the jet as a particle cloud (unordered sample).

EdgeConv block:

- NN module part of the ParticleNet architecture;
- New features vector associated to each jet constituent and based on the features of the k-nearest neighbors.

ParticleNet-MD new training performance

5

My work: First Run3 ParticleNet-MD validation

- Validation done on 2022 data events containing highly boosted $Z \rightarrow b\overline{b}$ + jets (<u>CMS-DP-2024-055</u>).
- Likelihood fit on the soft-drop mass (m_{SD}) to match data and SM prediction $(Z \rightarrow q\overline{q}, W \rightarrow qq')$ and QCD).
 - m_{SD}: jet mass after removing soft and wide-angle radiation.
- Data-driven estimation of QCD multijet background:
 - average of the fits of the Z-candidate m_{SD} distributions in nine mass sidebands.

ParticleNet-MD categorization

- Events categorized in five region of PNet-MD_{bbvsQCD}.
 - 20% of signal events in each PNet-MD_{bbvsQCD} region.
 - Lowest score region (<0.641) almost completely populated by QCD events and not included in the fit. ______CMS simulation Preliminary ______(13.6 TeV)
 - Independent Likelihood fit performed in each of the four highest score regions.

Boosted $Z \rightarrow b\overline{b}$ validation

- Good data-prediction agreement.
- Clear Z-peak in the data distribution.
 - Good signal discrimination from background.

CMS-DP-2024-055

Future plans for development of PNet at HLT

- ParticleNet-MD in HLT paths not optimized since Run 2.
- My plan: ParticleNet-MD optimization at HLT
 - ☑ ParticleNet-MD input variables implemented in the <u>BTV</u> <u>ntuplizer</u>.
 - Produce ntuples with flat p_t and mass distributions for mass decorrelation (MC production ongoing).
 - ☑ Train on HLT features using BTV <u>framework b-hive</u> (targeting December for first HLT optimization).

Conclusions

- Over the years, CMS has developed algorithms for boosted objects with increasing efficiency and performance.

- ParticleNet-MD best performing tagger for boosted jets, now optimized for Run 3.

- Validation on $Z \rightarrow b\overline{b}$ -like events in 2022 data.
 - Stable performance, with some improvement with respect to Run 2.
 - Good data-prediction agreement.
 - Clear Z-peak in data distribution at high score.
- Currently working on boosted jet tagging at HLT.

Backup

Jets as particle clouds: ParticleNet-MD

ParticleNet-MD state-of-art for CMS boosted jet tagging.

- Graph based architecture describing the jet as a particle cloud (unordered sample).

EdgeConv block:

- NN module part of the ParticleNet architecture;
- New features vector associated to each jet constituent and based on the features of the *k*-nearest neighbors.

Mass decorrelation:

 Trained on Monte Carlo (MC) simulations containing boosted resonances (X), decaying in taus and quarks, with a flat distributions in both of p_t and mass, as the signal sample, and the QCD multijet sample (reweighted to yield flat distributions) as the background sample.

ParticleNet architecture

ParticleNet architecture

ROC curve $b\overline{b}$ tagging performances (Run 2)

ROC curve $c\overline{c}$ tagging performances (Run 2)

Boosted $Z \rightarrow b\overline{b}$ event selection

- **High-Level-Trigger paths :** PFHT1050, PFJet500, AK8PFJet500, AK8PFJet400_TrimMass30, AK8PFJet420_TrimMass30, AK8PFHT800_TrimMass50

- Leading-p_T AK8 jet (Z-boson candidate): $p_T > 450$ GeV and $|\eta| < 2.4$
- Sub-leading-p_T AK8 jet: $p_T > 200$ GeV and $|\eta| < 2.4$
- Veto events with at least one electron or muon with p_T > 20 GeV, $|\eta|$ < 2.4, and satisfying the loosest identification and isolation working point
- Veto events with a b-tagged AK4 jet having $p_T > 30$ GeV, $|\eta| < 2.4$ and a distance ΔR from the leading AK8 jet greater than 0.8
 - The DeepJet medium working point is used to tag AK4 jets as originating from bquark

PNet-MD_{bbvsQCD} categorization

PNet-MD_{bbvsQCD} validation: Likelihood fit

- The likelihood fit is performed within the signal mass window in the four highest score regions defined in slide 7.

- The parameters of interest of the fit (the MC $Z \rightarrow q\bar{q}$ and $W \rightarrow q\bar{q}$ ' normalization factors) are obtained independently in each score region.
- The background from QCD multijet events is estimated using the average of the fits of the Z-candidate $m_{\rm SD}$ distributions outside one of nine alternative mass windows.
- The following uncertainties are considered:
 - uncertainty on QCD estimate due to the Z-candidate m_{SD} distribution fit functions;
 - uncertainty on QCD estimate due to the use of the nine mass windows;
 - statistical uncertainties for MC Z $\rightarrow q\bar{q}$ and W $\rightarrow q\bar{q'}$;
 - jet energy scale corrections for MC Z $\rightarrow q\bar{q}$ and W $\rightarrow q\bar{q'}$;
 - the luminosity uncertainty.

- All the uncertainties, with the exception of the luminosity one, are assumed uncorrelated in the different score regions.

QCD evaluation

- QCD estimation Data-driven technique
 - QCD estimated by fitting data m_{sD} distribution ([50-150] GeV) outside [70;126], [62;134], [78;118], [54;142], [86,110], [62;126], [78;126], [70,134] and [70;118] GeV windows.
 - QCD obtained as the average of the fits.
 - 2. Chebyshev polynomial functions have been used to fit Data.
 - Order established by means of the Fisher test (CL at 5%).
- QCD distributions assumed with the following uncertainties:
 - fit: symmetric error in each m_{SD} bin equal to the average of the fit function errors associated to each bin.
 - window: symmetric error in each m_{SD} bin equal to the root mean square deviation of the m_{SD} bin values obtained from the different fit functions.

QCD evaluation

PNet-MD_{bbvsQCD} score post-fit distribution

- PNet-MD_{bbvsQCD} distribution of the stack of $W \rightarrow q\overline{q'}$ and $Z \rightarrow q\overline{q}$ (split on the basis of its decay products) yield, and the data, once the QCD contribution is subtracted (Data - QCD), of the leading-p_t AK8.

- Bottom pad: ratio between Data-QCD and the stack.

- Good data-prediction agreement.

- The amount of $W \rightarrow q\overline{q'}$ and $Z \rightarrow q\overline{q}$ events, with q (light) or c quark, decreases increasing the score value.

Signal fraction

	Z→qq (q=b,c,u,d,s) percentage		
	Z→bb	Z→cc	$Z \rightarrow uu/dd/ss$
4 th highest score region	48.8%	35.5%	15.7%
3 rd highest score region	73.9%	20.5%	5.6%
2 nd highest score region	87.7%	10.9%	1.4%
highest score region	96.6%	3.18%	0.26%

- MC mis-identified $Z \rightarrow b\overline{b}$ percentage less than 4% in highest score region.
- 20% of $Z \rightarrow b\overline{b}$ signal events lost moving from a score region to the next.

ParticleNet-MD validation results

	r _Z
$0.641 < PNet-MD_{bbvsQCD} \le 0.875$	0.9 ± 0.5 (stat) ± 0.3 (syst)
$0.875 < PNet-MD_{bbvsQCD} \le 0.957$	1.37 ± 0.26 (stat) ± 0.21 (syst)
$0.957 < PNet-MD_{bbvsQCD} \le 0.988$	1.25 ± 0.15 (stat) ± 0.12 (syst)
0.988 < PNet-MD _{bbvsQCD} ≤ 1	1.01 ± 0.07 (stat) ± 0.07 (syst)

- $Z \rightarrow q\overline{q}$ (q = u, d, s, c, b) normalization factors (r_Z) with the corresponding error (split in statistical and systematic errors) in the four highest score regions.
- Normalization factors compatible with unity within uncertainties.

4th highest score region

3rd highest score region

2nd highest score region

Highest score region

ParticleTranfrormer

- ParticleTransformer architecture shows superior performance than ParticleNet [arXiv:2202.03772].

- Next goal: extend tagging to a large set of final states including top-tagging (3 prong), $X \rightarrow VV$ with hadronic and leptonic decays, taus etc.
- ParticleTransformer used already in HH \rightarrow VV \rightarrow 4b analysis [CMS-PAS-HIG-23-012]

New Jet tagging developments (Jet charge tagger)

- DGCNN based on the ParticleNet architecture predicting the charge of the AK8 jet.
 - Discriminate W⁺ and W⁻ bosons from Z boson.
- Observed good data-MC agreement selecting semileptonic tt events.

Jet charge tagger

- DGCNN based on the ParticleNet architecture predicting the charge of the AK8 jet.
 - Discriminate W⁺ and W⁻ bosons from Z boson.
- Training samples:
 - semileptonic tt MC simulation is used to get a sample with W⁺ and W⁻ jets;
 - Z+jets MC simulation.
- Validation done on a region enriched of semileptonic $t\bar{t}$ events.
 - Good data-MC agreement.

Jet charge tagger

semileptonic tt enriched region output score: W⁺

semileptonic tt enriched region output score: Z (not expected Z bosons)

New Jet tagging developments (HOTVR)

- Heavy Object Tagger with Variable Radius.
 - $R = 600 / p_T$ (R min 0.1).
 - Useful for 4 top final states in the intermediate region where the top quark is neither resolved ($p_t < 200 \text{ GeV}$) nor boosted ($p_t > 800 \text{ GeV}$).
 - For Run 2 top tagging was performed using a cut-based approach.
 - Developed a BDT, using as inputs the cut variables of the Run 2 analysis, to distinguish top quarks from QCD.
 - Observed improved with respect to the top tagging cut-based.

Top tagging with variable sized jets

Heavy Object Tagger with Variable Radius

- $R = 600 / p_t$ (R min 0.1, R max 1.5).
- Useful for 4 top final states where the top quark is not completely boosted (200 < p_t < 800 GeV).
- Efficiency as the ratio between the generated top quarks matching a reconstructed jet within ΔR and all the generated top quarks.

Developed a BDT to distinguish top quarks from QCD:

- Training on QCD multijet and the ttZ to simulate the background and the signal, respectively;
- Tested on a Z+jets enriched selection
 - Two opposite sign leptons (80 < m_{ℓℓ} < 101 GeV) + ≥1 HOTVR

<u>CMS-DP-2024-038</u>

Top tagging with variable sized jets

