
G I O R G I O G A M B O S I – L O R E D A N A V I G L I A N O

PERSISTENT DATA STORAGE IN
CHAOS: SOME CONSIDERATIONS

MOTIVATIONS

•  Framework
•  Huge amounts of data, such as the ones

produced by physics experiments
•  Data are produced at very high rate

• Needs
•  Historical DB to be managed and queried
•  Time series
•  Conditions on data (ex.: out of range)

•  High performance, especially in inserting data
•  Data access through abstraction layer, to provide

physical and logical independence

ACTIVITIES

• Providing access
•  defining actions (insert, queries) relevant to

CHAOS
•  identifying reliable, efficient OS tools to store and

manage data
•  dealing with data modeling issues

•  Integration in CHAOS
•  providing high-level API’s for data access
•  DBMS transparency/independence

DATA ACCESS

• 2 levels
•  Basic (elementary) queries
•  Limited number
•  Implemented on top of storage system API’s

•  Higher level queries
•  Composition of elementary queries
•  Composition formalization
•  Composition implemented on top of basic queries

DATA ACCESS (LOWER LEVEL)

• Query characterization
•  Set of simple & general basic queries
•  CHAOSQL_value([set_of_devs], time_interval, rate)
•  Returns for each device in set_of_devs, the time series of all

measured values, at the given rate

•  CHAOSQL_condition(device, condition,time interval, rate)
•  Returns for the given device, all values measured at times (in the

given time_interval) when the given condition is verified, at the
given rate

•  Up to now. Maybe more?

•  Query resolution algorithms implementation

DATA ACCESS (UPPER LEVEL)

• Query characterization
•  Composition mechanism of elementary queries

(syntax/semantics)
•  Implementation of complex query resolution

algorithms
•  CHAOSQL_fetch(complex_query)

•  Complex_query: AND/OR expression. Composition
of queries

DATA STORAGE TOOLS

•  Framework has many similarities with systems
for managing/dealing with/exploiting web
and social networks data
•  Big data (web pages, SN users profiles, logs, …)
•  High data production rate
•  Statistics and data warehouse/mining

• What we know from those cases?
•  Relational DBMS too complex/too slow
•  Scalability is important

NOSQL

• NoSQL
•  Key-value
•  Simple schemata
•  No join
•  No transaction
•  Large size
•  Scalability (Map-reduce)
•  Efficiency
•  Introduced to deal with big data produced in

social networking

ACTIVITIES AND NOSQL

• NoSQL systems evaluation
•  We need to compare different NoSQL systems
•  Creating a benchmark
•  Evaluation
•  Efficiency
•  Scalability
•  Functionalities

SW LAYER

• Abstraction
•  Design and development of sw layer
•  Provide unique interface for data access
•  Independence from underlying DBMS
•  Extendibility to more DBMS

• Query resolution
•  AND/OR expressions of lower level queries

