nWoXrITnN

ontrol system based on a
ighly

bstracted and

pen

tructure

software architecture
and developer introduction

C. Bisegni



ICHAOS software layer




ICHAOQOS software layer

CUToolkit, abstract the !ICHAOS resources to the
device drivers developers.

UlToolkit tools for developing client application
that accesses |CHAOS resource

11/dic/2011




ICHAOS software layer

=

eThe two layer are based on CommonToolkit and all they are the CHAOS Framework
eDeveloped in c++
e Multi Threading

m 11/dic/2011




ICHAOS Node & Service




ICHAOS FrontEnd and User Node

Control Unit, a piece of software developed on
CUToolkit implementing the device drivers

The Chaos Control GUI is based on the UlToolkit
for accessing |CHAQS resources. The UlToolkit is
also used by control panels/client applications
developers to make their custom application

11/dic/2011




ICHAOS Middle Layer

[ ]
[ ]

MEMCACHED

MONGODB

(=205

MetaData Server, keep track of all information
about device DataSet and Command, CU
address and other info.

Memcached is used for caching lived data

MongoDB is used for storing history data

11/dic/2011



Topology and Data flow




First Topology ad Data Flow

Metadata
Server Cluster

Pull

Live Data pull

History Data

MEMCACHED

L, ¢
MONGODB

MEMCACHED‘
MONGODB
MONGODB

Push Push
Live Data History Data

\
Bk

:
:
:

11/dic/2011



Topology Next Step

We are in R&D so we have made some adjustment
to the CHAOS topology

history data must be managed in different way
for different kind of query:

enear time history data

elong time history data

edata warehouse query

eetc.

\gg H 'A(Q': 11/dic/2011



New Node & Service




ICHAOS Client & MS Node

Data Proxy Service, is a scalable service that
implement a common proxy for the Live and
History data services. It includes memcached
and the drivers for implementing ChaosQL for
storing or querying history data

11/dic/2011




ICHAOS Service

( memcached )
( Live Data Cache )

Live data cache is a service implemented with
Memcached

This is the History Storage Cloud, that can be
accessed by means of the Data Service Proxy.

11/dic/2011



New Topology and Data flow




Topology and Data flow

e History Data Query
- Device Data Pack & Live Data Query
‘\C mmmmm d Pack N

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
Live
DI Data

Request
Live
D2 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
History

Request
History
D2 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
History

Request
History
D2 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Send Command Pack

. To D2

Send Command Pack
To DI

11/dic/2011




Topology Next Step

“issue”
previous flow has an issue, CU needs to use two channels:
first is ChaosSQL to write history data, second channel is
needed to write directly to memcached

...can we use ChaosQL for both history and live data?

\gg - 'Ag()’: 11/dic/2011



Topology Next Step

“solution?”
...next version of memcached supports modules and can
be embedded...can this be a solution?

...we are considering a little modification of the
topology: integration of memcached into the “Data
Proxy Service” as “Live Data Cache” service.

This will permit to:
® reduce the output data flow of CU (write once

instead of two times)
® remove the memcached driver from CU and use

ChaosQl also for live

\gg H 'A(Q': 11/dic/2011



Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Write
D3 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Write
D3 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
Live
DI Data

D3 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
History

|

Request Request
Live History
D3 Data D1 Data

HISTORY

D3 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Request
History

|

Request
History
D| Data

D3 Data

11/dic/2011




Topology and Data flow

B Device History Data Query
" Device Data Pack & Live Data Query
B> Command Pack

Send Command Pack

. To D3

Send Command Pack
To DI

11/dic/2011




Topology Next Step

Scaling with Memcached and MongoDB

Memcached is a key-value cache and scales on key names, each
client has an algorithm to link a “key” with “server”

MongoDB scales well on writes and reads (some tricks may be
used to increase the write speed)

\gg - 'Ag()’: 11/dic/2011



Topology Next Step

A further improvement for scaling performance (for the last
scenario):

achieve the “server scaling” by pre-calculating in which server a
CU must write “live” and “history” (send ChaosQL insert message)

every CU will have a list of server; it will begin with the first,
when it will not be reachable the second will be used and so on.

in this way we can scale taking into account the number of CUs
and network performance for each server

\gg H 'A(Q': 11/dic/2011



New Idea for the
Control Automation and Computing

11/dic/2011




An idea for automate the controls

® we are trying to design and add a new “node” into CHAOS

® it will be like a Control Unit but modelled to be used only for
controlling other CU or computations, slow controls, etc.

® it will be used for creating a distributed final state machine

® we called it “Execution Unit”

\(G - 'A(()': 11/dic/2011



Execution Unit Node

Execution Unit, is a specialized software that
implement controls or computing algorithms

| ChaosQL Data Pack Channel
‘\ Chaos Command Pack Channel

ExecutionUnit must define the input and output class of
data (HW Dataset or Basic Element) that are needed to do
the work

m 11/dic/2011



ICHAOS framework with new layer

-

CUToolkit (as for previous Layer) is implemented
on CommonToolkit

11/dic/2011




ExecutionUnit in the work




Execution Unit Example 1

The EU read the data from the Output attribute of the HW from the CU 1
data

11/dic/2011




Execution Unit Example 1

The EU write the result of computation to a CU_2 for set the Input attribute
of the HW

11/dic/2011




Execution Unit Example 1

CU_1 DATA BLOCK live data

m 11/dic/2011



Execution Unit Example 1

this is the real data flow

Ouput attribute data is
read from device

CU_1 DATA BLOCK live data

11/dic/2011




Execution Unit Example 1

this is the real data flow

CU_1

Output attribute data
is pushed

on live memory block
from CU _1

CU_1 DATA BLOCK live data

m 11/dic/2011



Execution Unit Example 1

this is the real data flow

Output CU_1 attribute
data is read from live

CU_1 DATA BLOCK live data

11/dic/2011




Execution Unit Example 1

this is the real data flow

some logic is done

\

CU_1 DATA BLOCK live data

11/dic/2011




Execution Unit Example 1

this is the real data flow

\
= » cu_2
||

The Input Attribute on CU_2
is set with RPC command

CU_1 DATA BLOCK live data

11/dic/2011




Execution Unit Example 1

this is the real data flow

The Attribute is set on HW
by CU_2

®-

CU_1 DATA BLOCK live data

11/dic/2011




Execution Unit Example 2

Now think to an execution unit that send
output to another execution unit and so on...

11/dic/2011




ICHAOS compared to a Normal PC

® CHAOS can be considered like a distributed
computer:

eLive data is the RAM
eHistory data is the Hard Disk
o CU are the kernel driver

®EU are the process that do something

\f g - 'Ag o 11/dic/2011



“‘mon Too ,4
%

Common Toolkit




Common Toolkit

e CommonToolkit has tree important software layers
® BSON Container for hardware dataset abstraction and
RPC pack
® RPC Driver
® ChaosQL Driver

® in addition it has a lot of common utility code

\g g H 'A( o 09/dic/2011



é ‘“mon Too ,‘,'

abstraction




abstraction

® CHAOS use BSON (http://bsonspec.org/) for data

description and serialization

® itis usedin:
® Hardware attribute description
® RPC message between node

\gg H 'A(Q': 11/dic/2011


http://bsonspec.org
http://bsonspec.org

abstraction

®BSON is a JSON-like binary document
e®a key-value document where a value can be:
ebasic types:
eint32
eint64
edouble
ecstring
ebyte
eBSON document
® Array

\gg H 'A(Q': 11/dic/2011



Hardware abstraction

Hardware abstraction is done in two point:

e Control Unit is needed to connect an Hardware or
other “Software Application” to CHAOS system

®BSON Serialization is used for describe the
hardware property

\gg - 'Ag()’: 11/dic/2011



Hardware abstraction

Hardware is attached
and controlled by CU

BSON_API

11/dic/2011

BSON_API

CU or MS
expose HW DATASET



«\mon TOO/

Hardware DATASET




Hardware DATASET

eHardware attribute are described within DATASET
eEach attribute is defined by
®Name
e Description
eType (kind+basic type ex: VOLT32, CUSTOM_STR, etc...)
e Cardinality (single or array)
e Flow (Input, Output, Bidirectional)
®Range

\gg - 'Ag()’: 11/dic/2011



Hardware DATASET

VOLT_CHANNEL_1

VOLT_CHANNEL_2

11/dic/2011

DATASET
name:VOLT_CHANNEL 1
type:VOLT32
flow:output
range:1-20
card: 1

name:VOLT_CHANNEL 2
type:VOLT32
flow:output

range:1-20

card: 1

name: RESET
type: BYTE
flow: input
card: 1

rl\



Hardware DATASET

The JSON visualization
of BSON DS representation

{“device_id"”: DEVICE_ID

VOLT_CHANNEL_1

“device_ds”: {

"name"' : "VOLT_CHANNEL_ 1",
— ""desc" : "Output volt...",
"attr_dir" 1 1,
"type" : 4’
VOLT_CHANNEL_2 C?"dlnallty ;1

\(< ] H L{A (T 11/dic/2011 |



& “‘mon Too '4

RPC System




RPC System

®RPC System is implemented as a plug-ins System.
®/t's is abstracted to internal CHAOS framework so we con change it
e The RPC layer is only used to send and receive bson data

eall the information are in the BSON pack

\g g H 'A( o 09/dic/2011



RPC System

BSON
RPC pack

e RPC BSON Pack has some information that CHAOS RPC System use
to dispatch the command

®"domain name" of the command

®"'name" of the command

esub-bson object that code the data

eanswer code {used by sender to read the response}

esender address{address where send the answer}

L .
\(ﬂ - (O,, 09/dic/2011



RPC System

RPC Message Flow

orequest message is constructed with BSON, serialized and sent to RPC end point

BSON
Request message

09/dic/2011




RPC System

RPC Message Flow

orequest message is constructed with BSON, serialized and sent to RPC end point

oif the requester want a response it put answer-code and sender-address in BSON
pack,and automatically RPC System wait for the answer

BSON
Request message

BSON Answer
message

09/dic/2011




RPC System

®The RPC System is user for:
oMS <-> CU
o CU management and retrieval information
o CU Heartbeat
oeUl <->CU
eSet the input attributes of hardware dataset
o CU management and retrieval information
o CU Management is:
einit, deinit, start and stop

| JVA e~ .
\(ﬂ - (O,, 09/dic/2011






CUToolkit and Control Unit

o CUToolkit help the Control Unit development

eDeveloper need to extend only one class to create a CHAOS
driver, the “AbstractControlUnit”

e AbstractControlUnit expose all the APIs needed for interacting
with ICHOAS

\(G - 'A(()': 11/dic/2011



Hardware controller (CU)

AbstractControlUnit is an abstract cpp class, that force developer
to implement some method

erun
estop

edeinit
esetDatasetAttribute

11/dic/2011




Hardware controller (CU)

defineActionAndDataset

epermit to define Dataset and/or CU identification,
that are sent to MetadataServer

setDatasetAttribute
ereceive the value for the input attribute of the
Dataset to be passed to the controlled Hardware
this method is accessible via RPC

11/dic/2011




Hardware controller (CU)

init

ereceive from metadata server the dataset with the
default value for Input attribute, if the controlled
hardware need to be initialize this is the right place
where do that

deinit
ethis is called when the Control Unit need to be
stopped

11/dic/2011




Hardware controller (CU)

run
ethread independent method scheduled with
parametrized interval. This is the place where the
hardware control and data acquisition is done.
Acquired data can be push to live and history data

stop
ecalled before “run” method is paused

11/dic/2011




CUToolkit feature

multi-threading messaging dispatcher; every CU has it’s own thread for
dispatching messages after it has been received by RPC System

CU Message Queue is filled

the RPC dispatcher
find destination queue

BSON
PACK

sent from
sender

V7

BSON

PACK

BSON

PACK

BSON

PACK

N

either the RPC dispatcher(CommonToolkit) and the CU scheduler of the message are customizable

m 11/dic/2011

T



CUToolkit feature

Management of the attribute priority on set operation

eothe “setDatasetElement” RPC message has an embedded customizable
queue for regulating the "set" operation of the input hardware
attribute of the DATASET

efor example; take the attributes A1 and A2 and A3

oif the A2 "setting" operation is “running”, Al can’t be processed
until A2 has finished

® A3 can be processed in concurrently with A1 and A2

ethis will be managed from MetadataServer or statically defined into
the ControlUnit

L .
\(ﬂ - (O,, 11/dic/2011



@ oolkit




UlToolkit and unified Control GUI

e UIToolkit is the framework layer that permit to developer to
create client application that need to access CHAOS resource

eit abstract to application:
econnection to CU for control a device

equerying the MetadataServer for retrieve HW information
and Dataset

e caching across UlToolkit process for live data

eintelligent polling(predict when there will be a new valued
on live data storage)

e Other functionality are in study

\gg - 'Ag()’: 11/dic/2011



UlToolkit and unified Control GUI

request
device
value

return new

Live Data
Interprocess
Caching pse

cached value

store new
device values
in cache

read data from

live data .
live cache

11/dic/2011




gUToolk;,  cuToolk;,

thanks for the time
@_ijl\*@’; 11/dic/2011



