

C ontrol system based on a
H ighly
A bstracted and
O pen
S tructure

LabVIEW integration
L. Foggetta – LAL/INFN

2nd SUPERB Coll. Meet.
Frascati

!CHAOS - SCHEME

More Abstraction Layers => Very specialized frontends

!CHAOS the dataflow starts and ends without knowing:
 => the generator
 => the type of processing that has been done
 => who's reading

but knowing well who is the boss!

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

CU acts as Forward Proxy

Forward Proxy => Internet

CU => !CHAOS

CU to HW

CuToolkitInstrument NR_DB

Internal Network

Instruments could be computational processes or real instrument, external or
internal to the CUToolkit host.

Non Relational Database (NR_DB) acts as the whole memory of the CS
system, where the CU puts the live data of their jobs

CUToolkit act as proxy layer to make a join with a local “world” to the more
extensive one.

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

!CHAOS – CU type

CU as C++ system calls

Host HW
data flux

Instrumentation

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

Proxy SW

CU as C++ process

Host SW
data flux
Host SW
data flux

CUToolkit data link with !CHAOS

CU Method Real or Virtual
Instrument

Data

Commands

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

CU Developing by C++ system calls

CU as C++ system calls

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS Like usual,
this development configuration needs of:

● Knowledge of low level programming
● Direct control of host system environment
● OS system-dependend developing
● OS system-dependend compiling
● Time for debugging
● Time for maintenance

Like usual (if well done), this means:

● Higher data throughtput
● Best host system performances
● Fine tuning of the machine

Best for
complex and custom

HW subsystem

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

CU Developing by proxy calls

No knowledge of the host machine HW:

● But knowledge of high level proxy language
● Simpler HL control of instrumentation
● No OS system-dependend developing (~)
● No direct compiling
● Less Time for debugging
● Less Time for maintenance

Proxy SW

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

Like usual (even if well done), this means:

● Less data throughput
● Reduced host system performances
● Less fine tuning of the machine

CU Developing by proxy calls

No knowledge of the host machine HW:

● But knowledge of high level proxy language
● Simpler HL control of instrumentation
● No OS system-dependend developing (~)
● No direct compiling
● Less Time for debugging
● Less Time for maintenance

Proxy SW

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

Like usual (even if well done) this means:

● Less data throughput
● Reduced host system performances
● Less fine tuning of the machine

Proxy SW act as HW
abstraction layer!

CU Developing by proxy calls

No knowledge of the host machine HW:

● But knowledge of high level proxy language
● Simpler HL control of instrumentation
● No OS system-dependend developing (~)
● No direct compiling
● Less Time for debugging
● Less Time for maintenance

Best for huge number of simpler
and standard instrumentation

Proxy SW

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

Like usual (even if well done) this means:

● Less data throughput
● Reduced host system performances
● Less fine tuning of the machine

Proxy SW act as HW
abstraction layer!

CU – An in-depth glance

Proxy SW

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS
The most inner layer is when we use a

proxy SW to join:

CUToolkit (!CHAOS)

HW (Host and external one)

Proxy SW Layer has two connections:
=> C++ calls from CuToolkit to Proxy SW
<= Proxy calls to External HW via Host HW

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

CU – An in-depth glance

Proxy SW

CU as C++ calls on proxy

Host HW
data flux

Instrumentation

CuToolkit data link with !CHAOS
The most inner layer is when we use a

proxy SW to join:

CUToolkit (!CHAOS)

HW (Host and external one)

Proxy SW Layer has two connections:
=> C++ calls from CuToolkit to Proxy SW
<= Proxy calls to External HW via Host HW

So what Proxy? So what connections?

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

ONE POSSIBLE CHOICE

Some few word on “WHAT?”

Our needs are to keep the stuff:

- simple => reduce developing problems

- simple => fast develop

- simple => robust infrastructure

- simple => reliability

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

It seems that we need SIMPLE procedures and simple
tools to specify (= make it real) an highly abstracted

infrastructure

National Instrument LabVIEW

LabVIEW (from NI site, www.ni.com) is:

➔ a graphical programming environment using intuitive graphical
icons and wires that resemble a flowchart

➔ used by millions of engineers and scientists

➔ develop sophisticated measurement, test, and control systems

➔ integration with thousands of hardware devices and provides
hundreds of built-in libraries for advanced analysis and data
visualization

➔ platform is scalable across multiple targets and OSs

➔ since its introduction in 1986, it has become an industry leader.

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

http://www.ni.com/

National Instrument LabVIEW
2nd SUPERB Coll. Meet.

Frascati
L. Foggetta – LAL/INFN

LV as PROXY SW?
→ Tool for very fast, uniform developing

→ Multi platform with few differences => can be overcome

→ Not needs of low level programming experts

→ fast and reliable expert and prototype application could be
implemented by “low level” LV tools

→ Easily learning by all

→ Fast and visual debugging and compilation

→ It owns a large field of typical engineering/physicist application
and routines

→ It owns also a huge number of old and new hardware driver

→ It is widely used also for large project in big physics experiment
- DAΦne & SPARC CSs
- RADE project @ CERN

→ Also widely used by scientifical industrial partner involved in

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV as PROXY SW?
→ Tool for very fast developing with huge community and

supported hardware

→ Multi platform with few differences => can be overcome

→ Not needs of low level programming experts but fast and reliable
expert and prototype application could be implemented by “low
level” LV tools

→ Easily learning by all

→ Fast and visual debugging and compilation

→ It owns a large field of typical engineering/physicist application
and routines

→ It owns also a huge number of old and new hardware driver

→ It is widely used also for large project in big physics experiment
- DAΦne CS
- RADE project @ CERN

→ Also widely used by scientifical industrial partner involved in

WHY NOT?

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

WHAT PROXY CONNECTIONS?
→ “One of the fundamental features that makes Linux and other

Unices useful is the pipe” (1997)

→ Multi platform => pipes are also on MAC and WIN

→ Pipes allow separate processes to communicate without having
been designed explicitly to work together

→ CUToolkit | LV (but with all other software capable to streaming
data)

→ NAMED Pipe are FIFO managed directly from the kernel within the
host. It are directly embedded in every OS distribution.

→ Named pipes are very simple to use.

→ mkfifo is a thread-safe function, no synchronization mechanism is
needed when using named pipes

→ Write (using write function call) to a named pipe is guaranteed to
be atomic

→Obviously, LV has pipe tools..

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – First word of CHAOS

Our implementation of LV was intended on following three
roads:

- make a LV shared object (or dll) loadable from CU, but
needs OS-typedependent call and tricky compilation.

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – First word of CHAOS

Our implementation of LV was intended on following three
roads:

- make a LV shared object (or dll), but needs OS-type
dependent call and tricky compilation.

- make the CUToolkit as shared object (or dll) loadable
from the LV, but some logical conflict start to
Arise

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – First word of CHAOS

Our implementation of LV was intended on following three
roads:

- make a LV shared object (or dll), but needs OS-type
dependent call and tricky compilation.

- make the CUToolkit as shared object (or dll) loadable
from the LV, but some logical conflict start to
arise

- make a CU executable (LV_CU) with calls via pipe
toward a LV executable that make the dirty job
with the HW.
=> CUToolkit owns only simple calls to deliver BSON DS
=> LV gets DS, setup HW, run HW, collects data in DS

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

Our implementation of LV was intended on following three
roads:

- make a LV shared object (or dll), but needs OS-type
dependent call and tricky compilation.

- make the CUToolkit as shared object (or dll) loadable
from the LV, but some logical conflict start to
arise

- make a CU executable (LV_CU) with calls via pipe
toward a LV executable that make the dirty job
with the HW.
=> CUToolkit owns only simple calls to deliver BSON DS
=> LV gets DS, setup HW, run HW, collects data in DS

LV_CU – First word of CHAOS
2nd SUPERB Coll. Meet.

Frascati
L. Foggetta – LAL/INFN

LV_CU – INIT PHASE
INIT PHASE

- Host opens a named pipe used for the communications from
CUToolkit to a "unique host pipe manager" via unique pipe

manager.vi

control_pipe

- Also starts a pipe manager VI template and CUToolkit

MSMS control_pipe
MSMS

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – CONTROL PHASE

CONTROL PHASE

- !CHAOS send to CUToolkit to instantiate a LV_CU to control
some HW via BSON DS

control_pipe

BSON
DataSet

manager.vi

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – CONTROL PHASE
CONTROL PHASE 1

- LV_CU passes BSON to manager.vi that opens and launch setup
HW template and bidir named pipe

control_pipe

BSON
DataSet

manager.vi

HW1.viHW1_pipe

- LV_CU is detached from HW startup procs
- LV_CU runs every time like the whole system is up and ready

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

HW1

LV_CU – SPECIALIZATION PHASE

SPECIALIZATION PHASE 1

- LV_CU takes direct control of HW1_pipe, after HW1.vi starts and runs
- LV_CU now specialize itself to a specified HW, calling the driver that matching

the BSON data

control_pipe

BSON
DataSet

manager.vi

HW1.viHW1_pipe

- manager.vi acts as local watchdog (alive)

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

LV_CU – DEINIT PHASE

DEINIT PHASE

- LV_CU will close all the HW dependent comms and process by
manager.vi

control_pipe

BSON
DataSet

manager.vi

- indipendent controls of failure of HW
and SW related to it

- LV_CU still alive during closing procs

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

HW.vi template
Our goal is to create device-class indipendent type of template VI where some

simple subprocesses do all the jobs, letting the DYNAMICALLY CALLED driver
to specify the LV_CU.

HW.vi SUBPROCESSES:

BSON coding and decoding SP
HW's pipe reading and writing BSON data packet: none of

them is processor
compsuming (processing on demand)

DISPATCHER SP
Take the input dataset (decoded above) and select the CU

method-like subVI to run

METHOD SP
It contains dynamic subVI's calls to put in run machine

processes, store temporary data, data manipulation

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

What we use to do so?

- LabVIEW QUEUE to buffer BSON DS

- LabVIEW VARIANT polymorphic structure to match the
flexibility to store data and managing dynamically created
data since one structure is different from each DS

- LOW LEVEL LabVIEW's vi tool to increase the
whole system portability in the future development of
LABVIEW

- Custom Pipe's CIN to match blocking feature and to be non
OS dependent

- Custom BSON decode and code VI and CIN to improve the
VARIANT processing speed (un-flatten_to_BSON like)

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

WHAT remains to the LV_CU
developer?

Since nowadays we intend to use only six elementary CU method:

- defineActionAndDataset
- setDatasetAttribute
- init
- deinit
- run
- stop

The LV developer has to develop only six cases, each of those
will be called by the DISPATCHER subprocess,

no matter what is !CHAOS but understanding well what DS is.

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

SUMMARY of devel

- Prototype of the template of LV_CU

- !CHOAS to HW init, startup, run, deinit procedures

- HW to !CHAOS delivering in MemCached

- Custom LV tools for BSON

- Custom LV tool for MongoDB and Memcached

- Some pieces (intermediate level) of DAΦNE CS VME memory as
been diverted to Memcached in the LV environment to improve
performances and test stability

- Some successful attempts in displaying data with LV directly from
Memcached

2nd SUPERB Coll. Meet.
Frascati

L. Foggetta – LAL/INFN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

