RD_Mucol @ LNF

Machine-Detector Interface

□ All activities are now oriented towards the preparation for the Update of the European Strategy for Particle Physics (submission of contributions is due by March 26, 2025).

New nozzle design for 10 TeV

Realistic material composition

Component	Density [g/cm3]	Element	Atomic Fraction (mass fraction if negative)
EM Shower Absorber	18	W	-0.95
		Ni	-0.035
		Cu	-0.015
Neutron Absorber	0.918	н	0.5
		С	0.25
		В	0.25

Available high-statistics B sample with the new nozz

	Collider energy	1.5 TeV	3 TeV	10 TeV (v 0.8)	10 TeV (EU24*)
	Photons	7.1E+07	9.6E+07	1.6E+08	9.9E+07
165.	Neutron	4.7E+07	5.8E+07	1.4E+08	1.1E+08
	e+/e-	7.1E+05	9.3E+05	8.9E+05	1.2E+06
	Ch. hadrons	1.7E+04	2.0E+04	5.2E+04	4.2E+04
	Muons	3.1E+03	3.3E+03	3.3E+03	9.6E+03

Incoherent e⁺e⁻ pair production

account:

- relatively high-energy e^{+/-} enter the detector at the interaction point in time with the bunch crossing;
- the solenoidal B field confines most of the e^{+/-} in the innermost region close to the beampipe;
- mainly the vertex detector and the inner tracker layers are affected.

• Additional significant background from incoherent e⁺e⁻ pairs produced at bunch crossing is now taken into

10 TeV	BIB	e⁺e⁻ pairs
Photons	9.9E+07	4.0E+06
Neutron	1.1E+08	1.3E+05
e+/e-	1.2E+06	2.1E+05

New detector concept for 10 TeV

- The requirements for the detector specifications from physics are similar to those of other multi-TeV machines to reconstruct:
- boosted low-pT physics objects from Standard Model processes;
- central energetic physics objects from decays of possible new massive states;
- less conventional experimental signatures: disappearing tracks, displaced leptons,
- displaced photons or jets, ...
- \Box Constraints from the machine design: final focusing quadrupoles at ± 6 m from the interaction point.

Ultimately, the detector design, the technological choices, and the development of the event reconstruction algorithms will be driven by the high levels of machine-induced background.

The MuSIC detector concept

The MuSIC detector (Muon Smasher for Interesting Collisions)

fully integrated in MuonColliderSoft

superconducting solenoid: B = 5 T.

vertex detector and tracking system: Full-silicon (pixels and macro pixels). new 10-TeV nozzles

CRILIN was conceived and is led by **LNF**

Collaboration with teams from Padova, Trieste, and Torino

Submitted a FIS-2 project for:

- The electromagnetic calorimeter (CRILIN) and an innovative hadronic calorimeter
- → MITICO (MultI TeV Colliders CalOrimeter)

CRILIN a CRystal calorImeter with Longitudinal Information for the future Muon Colliders

Irradiation Studies: Irradiation studies with the designated dose have been concluded.

BTF, April 2024

- Study of the LY loss of one layer of Proto-1 after Gamma ray irradiation
- Beam: 450 MeV electrons with multiplicity 1
- Beam centered on a different crystal at each run

Building a large-scale prototype

- SiPMs Procurement: A total of 800 SiPMs (3x3 mm² with 10 µm pixel size) have been acquired, sufficient for 400 crystals (with 2 SiPMs in series per channel).
- Mechanical Design: The first design of the new mechanical envelope is complete, and the prototype matrix for 3x3 crystals is currently in fabrication.
- Electronics: The design of the electronics has been finalized.
- MC Design: The design of the Crilin full scale prototype in the Monte Carlo simulation has been completed.

DRD 6 Task 3: Deliverables Status

We are almost on schedule.

•We won an Italian grant for a small-scale prototype (5x5x5 layers). of the full-scale prototype (details to follow).

Milestone

Crilin M3.8M3.9

•Funding from the agency is still delayed until 2025, which may cause potential issues with the readout

Deliverable	Description	Due date
D3.4	Acquisition and tests of crystals and SiPMs;	2024
	design and production of electronics boards;	
	design and production of the mechanical components	
D3.5	Calorimeter fully assembled	2025
	Beam test characterisation of a full containment	2025
	EM calorimeter prototype	
	Report on testbeam results	2026

Geant4 simulation of the new prototype

- Initial proposal 11x11 x6 layer (crystals 10x10x40 mm² each) \rightarrow 2.5 R_M 26 X₀
- Crystals wrapped in 150 um Mylar foils and placed a 150 um aluminum honeycomb
- 2 SiPMs 3x3 mm² per cystal, 2 mm thick, per layer
- 2 mm thck PcB, per layer
- Photostatistics and noise measured during beam tests : Poisson 0.3 p.e./MeV, Gauss 5 MeV

Number of crystals optimization

- optimized the number of crystals, with the goal of minimizing the energy resolution loss
 - \rightarrow optimization performed for an electron beam with 100 GeV of energy.

By setting a threshold similar to that expected for the Muon Collider (i.e. 40 MeV) per crystal, we

Number of layers optimization – 1

- The average number of crystals triggered above the threshold leads to a 7x7 configuration for layers 2, 3, 4, and 5.
- The sixth layer is crucial for maximizing energy resolution → longitudinal leakage creates a

much larger energy fluctuation compared to lateral leakage (for the same amount of leakage).

Number of layers optimization – 2

• The average number of crystals triggered above the threshold leads us to a 5x5 configuration for layers 1 and 6.

11

- lacksquare

2024: Prototype Development for Mechanics and Data Acquisition

For the acquisition of the required 250 channels, we have two options: • Custom front-end electronics paired with CAEN V1742 flash ADC digitizers (cost ~ 40+80k EUR needed) • CAEN A5204 board with integrated amplification electronics, based on the 64-channel Radioroc unit for FERS-5200 and Pico TDC (total cost for 250 channels ~ 60k EUR needed)

- CAEN board in a dedicated test beam at the beginning of 2025.
- tests, achieving timing O(20 ps) for deposited energies >1 GeV.

 \succ We are developing a 3x3 prototype compatible with both solutions and will assess the effectiveness of the

> The first solution (custom electronics and flash ADC) has already been proven effective in previous Proto-1

Example as discussion basis nun

nbers will change	=3 TeV	=10 TeV	
Beam parameters			
Muon energy	1.5 TeV	5 TeV	
Bunches/beam	1		
Bunch intensity (at injection)	2.2×1012	1.8×1012	
Norm. transverse emittance	25 μm		
Repetition rate (inj. rate)	5 Hz		
Collider ring specs			
Circumference	4.5 km	10 km	
Revolution time	15.0 μs	33.4 μs	
Luminosity			
Target integrated luminosity	1 ab-1	10 ab-1	
Average instantaneous luminosity (5/10 yrs of op.)	2 x 10 ³⁴ cm ⁻² s ⁻¹ / 1 x 10 ³⁴ cm ⁻² s ⁻¹	1 x 10 ³⁵ cm ⁻² s ⁻¹ / 2 x 10 ³⁵ cm ⁻² s ⁻¹	

See also parameter doc: https://cernbox.cern.ch/s/NraNbczzBSXctQ9

τ = 2.2×10⁻⁶ s

Muon decay =3 TeV =10 TeV Mean muon lifetime 0.031 s 0.104 s in lab system (γτ) Luminosity lifetime 1039 turns 1558 turns Beam inetnsity $(10^{12}\mu)$ Stored beam intensity 10 TeV $\mathbf{2}$ vs time: 3 TeV0.2Ŏ.0 0.40.60.81.0humi $(10^{35} \text{cm}^{-2} \text{s}^{-1})$ 8 Inst. luminosity vs time: 10 TeV63 TeV Average 10 TeV $\mathbf{2}$ Average 3 TeV Inst. 0.2Ŏ.0 0.60.80.41.0t [s]

15