

Pion femtoscopy at NA61/SHINE

Barnabás Pórfy

Eötvös Loránd University, HUN-REN Wigner RCP

University of Bologna, CosmicAntiNuclei Seminar 2024.09.24

Barnabás Pórfy, barnabas.porfy@cern.ch

NA61 after the LS2

- Upgrade of DAQ + new trigger system (TDAQ)
 - **Detector readouts replaced** \rightarrow data taking rate increase 20x
 - STPCs ALICE (frontends, readout control units); other detectors DRS4
- Construction of:
 - Sertex Detector open-charm measurements
 - Long Target Tracker neutrino program
 - **_**■ToF-F wall
 - Multi-gap Resistive Plate Chamber based ToF-L (ToF-R under construction)
 - Beam Position Detector
 - Geometry Reference Chamber drift velocity measurement
 [™]

- Upgrade of PSD: MPSD + FPSD

Sevent sample in Se+Be at 150*A* GeV/*c* − 2011 Ar+Sc at 150*A* GeV/*c* − 2015 $\rightarrow \sqrt{s_{NN}} \approx 16.8 \text{ GeV}$

~3M events

Lévy approach – a summary

Based on experimental results: Gaussian not describe data well

Generalized central limit theorem Lévy distribution (stable, symmetric):

$$\mathcal{L}(\alpha, R; r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$$

- **●** Generalization of Gauss, power-law~ $r^{-(d-2+\alpha)}$
- **(**) Momentum correlation related to source S(x):

 $C(q) \cong 1 + \lambda \cdot \left| \tilde{S}(q) \right|^2$

● General approach: Gauss→Lévy shaped source

$$C(q) = 1 + \lambda \cdot e^{-(|q_R|)^{2 \to q}}$$

- Actual and mixed pair distribution → $C(q) = \frac{A(q)}{B(q)} \cdot N$
- QCD universality class ↔ 3D Ising Halasz et al., Phys.Rev.D58 (1998) 096007, Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
- Spatial correlation: ~ $r^{-(d-2+\eta)}$ Lévy source: ~ $r^{-(d-2+\alpha)}$; α ⇔ η? Csörgő, Hegyi, Novák, Zajc, AIP Conf. Proc. 828 (2006) 525-532 ● At CEP:
 - $Random field 3D Ising: \eta = 0.50 \pm 0.05$ Rieger, Phys.Rev.B52 (1995) 6659
 - **3**D Ising: $\eta = 0.03631(3)$ El-Showk et al., J.Stat.Phys.157 (4-5): 86

Agging a gravitation of the appearance of Lévy: Possible reasons for the appearance of Lévy:

Gauss

QCD jets; Anomalous diffusion; Critical behavior; ...

Csörgő, Hegyi, Novák, Zajc, Acta Phys.Polon.B36 (2005) 329-337 Csanád, Csörgő, Nagy, Braz.J.Phys.37 (2007) 1002 Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc.828 (2006) 525-532 Metzler, Klafter, Physics Reports 339 (2000) 1-77 Kincses, Stefaniak, Csanád, Entropy 24 3 (2022) 308

Kincses, Stefaniak, Csanád, Entropy 24 3 (2022) Kórodi, Kincses, Csanád, Phys.Lett.B 847 (2023)

Anomalous

diffusion

(Lévy flight)

Normal

diffusion

Lévy

Barnabás Pórfy, barnabas.porfy@cern.ch

Usual problems, questions

Usual check-list and questions (π) ●1D or 3D? (Usually decided before...) Maximum multiplicity in an event SNeeded for background mixing **_**Determines size of N_{pool} N_{pool} Pair average transverse momenta Show large intervals? ●How many? ●How should they be distributed? Momentum difference variable $\int q_{inv}$ or q_{LCMS}

FUDOMÁNYEGYETEN

Usual questions – What is the correct variable?

Sorrelation function is measured as a function of momentum difference q

Useful to use Longitudinally CoMoving System (Bertsch-Pratt)
 S. Pratt, Phys. Rev. D33, 72 (1986)
 G. Bertsch, M. Gong, M. Tohyama, Phys. Rev. C37, 1896 (1988)

average momentum orthogonal to beam

● source is approx. spherically symmetric in nucleus-nucleus collision

● In cases where statistics is not enough: use 1D momentum difference

⑤ Need to check two options: q_{LCMS} or q_{inv} (=PCMS)

$$\mathbf{P}_{inv} = \sqrt{-(E_1 - E_2)^2 + (p_{1x} - p_{2x})^2 + (p_{1y} - p_{2y})^2 + (p_{1z} - p_{2z})^2 }$$

$$\mathbf{BUT}! \ q_{inv} = q_{out}^2 (1 - \beta_T)^2 + q_{side}^2 + q_{long}^2 \rightarrow \text{even if } q_{out} \text{ is large and } \beta_T \approx 0 \rightarrow q_{inv} \text{ can be small!}$$

 $\beta_{\rm T} = \frac{K_{\rm T}}{K_0}$

This makes *q* observer (q_{LCMS} or q_{inv}) dependent

● Can we decide which option is best...?

Usual questions – What is the correct variable?

- **•** Yes! We can measure $q_0 = |E_1 E_2|$ vs. $|\mathbf{q}|$
- **\square** In case q_{inv} is the correct variable, we expect maximum diagonally
- **\square** In case q_{LCMS} is the correct variable, we expect maximum near 0

$$|\mathbf{q}_{\text{LCMS}}| = \sqrt{(p_{1x} - p_{2x})^2 + (p_{1y} - p_{2y})^2 + q_{z,\text{LCMS}}^2 }$$

$$q_{z,\text{LCMS}}^2 = \frac{4(p_{1z}E_2 - p_{2z}E_1)^2}{(E_1 + E_2)^2 - (p_{1z} + p_{2z})^2}$$

IN THE PARTY

TUDOMÁNYEGYETEM

Cuts and usual problems

Usual cuts

- Centrality selection
 - statistics, compatibility with other data
- ●How to mix the events
- Sapidity cut (around midrapidity)
- **●**PID
 - Sethe Bloch and / or ToF?
 - Pions, kaons, protons?
- Track splitting
 - visible spike in actual pair distribution
- Track merging
 - ______visible in pair distance (geometrical, momentum space,...)
- Fitting range
 - Swhere to start and where to finish

(Two-particle) femtoscopy measurement steps

After the good tracks are selected... create:

- (q): Actual event relative momentum distribution
 - pairs from same event
- B(q): Background event relative momentum distribution
 pairs from mixed event
- Measure C(q) for various m_T bins
 - $m_{\rm T}$ = average transverse mass of the pairs
- **\square** Fit C(q) with suitable function
- **(**) Determine $m_{\rm T}$ dependence of fit parameters

$$m_{\rm T} \equiv \sqrt{m_{\pi}^2 + k_{\rm T}^2}$$

Event mixing

<u>General idea</u>: fill up N_{pool} events from previous actual events, in different classes – centrality, multiplicity,...

- Actual/current event with n pions
- A method: make pairs with all pions of the pool to all actual pions
- **B method**: make pairs with all actual pions to a random selection of *n* background pions
- **C method**: select randomly one event and select randomly one pion, make pairs
- In our (and most) case, C method is preferred and used

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

A-B and track splitting

●Track splitting spike in low-q is a telling sign in A(q), B(q)

A healthy A-B-C

Sexample plots of A(q), B(q), C(q)

B-E effect visible in blue circle

Coulomb repulsion in red circle, in case of like charged pairs

HUN REN **wigner**

EÖTVÖS LORÁND tudományegyetem

Coulomb correction

- \square Dealing with like charged pairs → Coulomb repulsion
- Coulomb correction is needed (CC)
- Calculation is possible via a novel method of numerical integration
- Plug-n-play tool available: <u>https://github.com/csanadm/CoulCorrLevyIntegral</u>

Nagy, M., Purzsa, A., Csanád, M. and Kincses, Dániel, Eur.Phys.J.C 83 (2023) 11, 1015

UDOMÁNYEGYETE

Coulomb correction "correction"

Measuring in LCMS, but Coulomb correction is in PCMS
 This is negligible, but 1D spherical source in LCMS
 NOT spherical in PCMS

Boost R to PCMS:
$$R_{PCMS} = \sqrt{\frac{1-\frac{2}{3}\beta_T^2}{1-\beta_T^2}} \cdot R$$

where $\beta_T = \frac{K_T}{m_T}$
 $q_{inv} \approx \sqrt{1-\beta_T^{\frac{2}{3}}} \cdot q_{LCMS}$
 $K_{Coul}(q,R) = K_{Coul}\left(\sqrt{1-\beta_T^{\frac{2}{3}}} \cdot q, \sqrt{\frac{1-\frac{2}{3}\beta_T^2}{1-\beta_T^2}} \cdot R\right)$

Use this source for Coulomb correction

- Sold Coulomb correction: fits into the source smaller in size
- Current Coulomb correction: same size

 - larger in transversal

UDOMÁNYEGYETE

B. Kurgyis, D. Kincses, M. Nagy, and M. Csanád, Universe 2023, 9(7), 328

Formula without final state interactions: $C^{0}(q) = 1 + \lambda \cdot e^{-(|qR|)^{\alpha}}$ $C^{$

Yu. Sinyukov et al., Phys. Lett. B432 (1998) 248, M.G. Bowler, Phys. Lett. B270 (1991) 69

$$C(q) = N \cdot \left(1 - \lambda + \left(1 + e^{-(q\mathbf{R})^{\alpha}}\right) \cdot \lambda \cdot K_{\text{Coul}}(q)\right) \cdot (1 + \varepsilon q)$$

N – normalization, ε – background linearity

Physics parameters

 λ : correlation strength (core/halo model)

Core-halo model: Csörgő, Lörstad, Zimányi, Z.Phys.C71 (1996) Bolz et al, Phys.Rev. D47 (1993) 3860-3870

R: Lévy scale parameter (similar to HBT size, ~length of homogeneity)

 α : Lévy index (CEP proximity, shape of the source):

Barnabás Pórfy, barnabas.porfy@cern.ch

FSI free

Core-halo model

- ●Hydrodynamically increasing core \rightarrow pion emission
- Sesults in two-component core + halo source:

$$S(x) = S_{\text{core}}(x) + S_{\text{halo}}(x)$$

- Core: thermal hydro medium, size \leq 10 fm
- Halo: long lived resonances (ω, η, K_0^s , ...), size \gtrsim 50 fm
- Halo is not seen due to detector resolution
- \square Real $q \rightarrow 0$, at C(q = 0) = 2
- **●**Experimentally: $C(q \rightarrow 0) \rightarrow 1 + \lambda$
 - ●Experimentally $q \leq 5 10 \text{ MeV}/c$ not accessible
 - Halo size "corresponds" to small momenta

$$Define \ \lambda = \left(\frac{N_{\text{core}}}{N_{\text{core}} + N_{\text{halo}}}\right)^2$$

Fitting and fitting ranges

- Goodness-of-fit: χ^2 , NDF \rightarrow confidence level
- Sit ranges start and end of fit (q_{\min}, q_{\max}) must be optimized
 - Select by eye q_{max} where C(q) is "flat" already
 - Performing fit with q_{min} steps bin-by-bin starting point of the scan can be around B-E peak ending point of the scan can be around middle to end of the B-E slope
 Display all obtained parameters with values, error bars + highlight if fit failed
- ●How to select fit ranges? All below should be considered simultaneously
 - Fit converged
 - **●**Parameter values are believable ($\alpha \ge 2, \lambda \ge 1$)
 - Trend of parameters
 - **\square**Generally, fit q_{\min} should increase with increasing K_{T} bins

Takes ~50% (or more ©) of total work

Low-q range issue – MC correction?

Low-q range – fits overestimate the data

Separation Separa

IN THE PARTY

UDOMÁNYEGYETE

Maybe use Monte Carlo to correct this effect?

C(q) KT = 0.22 GeV/c (0.20 - 0.25) GeV/c

Monte Carlo correction idea

- Subscription Scheme S
 - Correction is unstable
- OK, then what can we use it for?

Monte Carlo estimation

We can estimate the start of this strong cutoff

●B-E and Coul. effect not present in EPOS simulation

● $C_2(q) \approx \text{const.}$

FUDOMÁNYEGYETEN

- Low-q range behavior in data:
 - Sits overestimate data
 - Theoretical correlation function cannot describe
 - Observed in Be+Be, Ar+Sc
- Strong cutoff observable
 - Several possibilities...
 - Might be experimental artefact?
- Sisible deviation from generated (simulated)
 - Seffects such as track merging present
- ●Low-q region (until reco. \approx 1) can be excluded
 - S Two Track Distance (track merging) cut not used

iner ^E

Barnabás Pórfy, barnabas.porfy@cern.ch

⁷Be+⁹Be at highest energy

- ●Lévy scale parameter *R* related to length of homogeneity
 - Segion in space

UDOMÁNYEGYETEM

- Semission of particles are coherent, correlated
- ●System size comparable to p+p

 $\square R \text{ decreasing trend, } \frac{1}{R^2} \propto m_{\text{T}} \text{ (calculated for Gaussian shape!)}_{\text{Csörgő, Lörstad, Phys.Rev.C54 (1996) 1390}}$

$$m_{\rm T} \equiv \sqrt{m_{\pi}^2 + k_{\rm T}^2}, k_{\rm T} \equiv 0.5 \sqrt{k_X^2 + k_y^2}$$

⁷Be+⁹Be at highest energy

- **_**Correlation strength / intercept parameter λ
 - Selated to the core-halo model
- ●Small size ~ p+p

- $\mathfrak{s}\lambda \sim \text{constant}$, no decrease with low m_T
- ●Compared to STAR, PHENIX: lack of decrease at low-m_T

Possible explanation for increasing N_{halo} :

_In-medium-mass modification of η'

- Large mass due to chiral symmetry breaking
- Potential chiral symmetry restoration → lower mass
- Lower mass \rightarrow more produced \rightarrow larger halo

Kapusta, Kharzeev, McLerran, PRD53 (1996) 5028 Vance, Csörgő, Kharzeev, PRL 81 (1998) 2205 Csörgő, Vértesi, Sziklai, PRL105 (2010) 182301 PHENIX, Phys.Rev. C97 (2018) no.6, 064911

⁷Be+⁹Be at highest energy

SLévy stability index α : shape of spatial correlation

●Small system, comparable to p+p

 $\square \alpha \approx 1$ →Cauchy shape, ≠ Gauss, ≠ CEP

Compatible with Lévy assumption

No state

UDOMÁNYEGYETEN

Barnabás Pórfy, barnabas.porfy@cern.ch

Energy dependence in ⁴⁰Ar+⁴⁵Sc

For Gaussian sources $R \sim 1/\sqrt{m{\rm T}}$

TUDOMÁNYEGYETEM

RE

Csörgő, Lörstad, Phys.Rev.C54 (1996) 1390

0.5

0.

Energy dependence in ⁴⁰Ar+⁴⁵Sc

 \square Almost constant (except maybe 30A GeV/c)

■Halo component increases at RHIC; $\lambda = \left(\frac{N_{\text{core}}}{N_{\text{core}}+N_{\text{halo}}}\right)^2$

S. E. Vance et al, Phys.Rev.Lett. 81 (1998) 2205-2208 T. Csörgő et al, Phys.Rev.Lett. 105 (2010) 182301 A. Adare for PHENIX Collaboration, Phys.Rev. C97 (2018) no.6, 064911

Not really visible at SPS

No state

EÖTVÖS LORÁNI TUDOMÁNYEGYETEM

Barnabás Pórfy, barnabas.porfy@cern.ch

Interparameter correlation

Sknown characteristic of Lévy fit

●Observed in PHENIX, in NA61/SHINE

- **\square** Statistical uncertainty: via Minos for 1σ contours
- Statistical uncertainty of a given parameter:
 - side length of "bounding box" of N-dimensional contour surface
- 2D projections of N-dim. contour shown below
- "Cross" shows parameter uncertainty, equal to contour projection
- **⑤**To reduce the correlation one parameter

UDOMÁNYEGYETEM

$$\delta P^{\pm}(i) = \sqrt{\sum_{n} \frac{1}{N_n^{j^{\pm}}} \sum_{j \in J_n^{\pm}} \left(P_n^j(i) - P^0(i) \right)^2 }$$

SWhere:

- \mathfrak{s} i bin (0,1,2,3,...), in our case: K_T bins
- $P^{0}(i)$ value of parameter in i
- $\mathfrak{s}n$ # of systematic source

Analysis workflow TUDOMÁNYEGYETEN

Further plans

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

● Finalization and article on ⁴⁰Ar+⁴⁵Sc energy scan results

Solution States Stat

Thank you for your attention!

Backup

Femtoscopy group results

Different experiments, different acceptances
System size dependence?
Centrality dependence?
Energy dependence?

Stable distribution

If a lin. comb. of two indep. random variables with this distribution has the same distribution

$$\mathbf{I}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(q) e^{-ixq} dq$$
, where the characteristic function:

 $\varphi(q; \alpha, \beta, R, \mu) = \exp(iq\mu - |Rq|^{\alpha}(1 - \beta \operatorname{sgn}(q)\Phi)$ α : stability index β : skewness, distribution is symmetric if = 0

R: scale parameter

 μ : location parameter, if $\beta = 0 \rightarrow$ median

$$\Phi = \begin{cases} \tan\left(\frac{\pi\alpha}{2}\right), \alpha \neq 1\\ -\frac{2}{\pi}\log|t|, \alpha = 1 \end{cases}$$

Sum of two random variables from a stable distribution gives something with the same values of α and β (with possibly different values of μ , R ...)

●Ha $\beta = 0 \Rightarrow$ Lévy symmetric alpha-stable distribution