Central Drift Chamber

- The CDC in Belle was operating very successfully at KEKB
- The Belle II CDC is an adiabatic evolution of this successful design
- However, the background situation at SuperKEKB is significantly more challenging than anticipated at the design stage
- As its name says, the CDC is **central** to the Belle II physics program

DESY.

tracking, triggering, PID

program

Questions

- How compatible are the presently considered running/upgrade scenarios with the projected development of CDC performance?
- What options do we have to mitigate possible serious performance degradation
 - between LS1 and LS2 ?
 - in LS2 (whenever it will happen) ?

Concerns

- Uncertainties are still significant, but there are justified concerns related to
 - use of He/C₂H₆ gas mixture in high background environment: ageing
 - integrated charge per wire length will substantially exceed the Belle level
 - temporary and local appearance of Malter effect seen very early on (this triggered the formation of the CDC task force in 2018)
 - L54 kept off/standby until 2020c; since Dec 2020 it was turned on again and operating stably since then $\sqrt{}$

Addressed by existing Eol

- vulnerability against increasing injection background
- hit rate limitations
 - ► space charge effects (→ efficiency, dE/dx resolution)
 - occupancy for tracking
 - even amplified by cross talk
 - radiation hardness of frontend electronics
- Safety factors at design parameters of SuperKEKB are marginal

Run Gain Variations before and after LS1

Run Gain Variations before and after LS1

- Observed gain variation, mainly due to inadvertent changes in gas conditions and increasing beam background, completely masks expected gain loss extrapolated from pre-Belle ageing study
 - pre-LS1: too high (~10x) H₂O level (unreliable H₂O & O₂ monitors)
 - post-LS1: H₂ fraction reaching ~7%

Run Gain Variations before and after LS1

CDC Gas System

Current layout (including many LS1 improvements) Simplified and somewhat outdated principle Gas cylinder storage area 0.34MP -1284-0.30MPa Neck Valve MKS PS 7 0.23MPa Controller PDR-C-1C 12V Set 30mbar Ai MFC MFC MFC MFC Ai (P H Neck Valve(NC) 4.5~5.5kg/cm FM -17 -17 2cc/min. ~2x0.1L/min DPT 223B 1 0~133mbar 4 He+ethane He bombe C2H6 bombe Z EX1 11.8MPa 10kg MFC MFC ∼5.5m³ Scale Ground Safety Valve(NO) exhaust H2O (30+30)~(100+100)cc/min. bubbler FM -1200 ethane Helium EX24 Safety Lir × H20-→ 🔀 FM -b≪l→ex2 TOP KH-D&1-Max.30mbar (1/4)x8m Gas Analyzer **Bvpass** Manometer valve valve ULF-B06-W2-V -1280-(H2O) pressure H2O IN/OUT #8 monitor (P) Mixer **+**∞ Filter Bubbler FM φ40x250 Bypass Line 0~10kPa Glass Trap 25cc/min. -1×1-(P) × pressure EX2 MFM _(OPT buffer buffer - Purge -1283-CDC conroller tank 1 tank 2 FWD exhaust BWD -D&CH MFC4 --D&C+ Bypass XLF-D-S2P 8000 L safety 8200L 0~0.06MPa (1')x3.5m Max.1L/min. (1/4)x3m 20Ax30m 20Ax30m valve (P)-100-Middle Tank Large Tank 1201 -1280 Filter -1980) Manifold MFC -O2 filter Hydrogen (3/8) 100L 200L (1/4)(3/8)1 (APT)690A13 4x(3/8)x3m CDC EX2 A O2 Sensor DPS DPS small pump ->4x(1/4)x2m MFC MFC MFC EX2 Purge buffer tank oxyIQ HD 8x(1/4)x1m Flex+1.2m VAISALA Dew IQ $2H_2+O_2 \rightarrow 2H_2O$ DPS Holder ->4x(3/8)x5m DMT143 ~4L/min Purge 4.5 L/min. MKS MKS Parge EX -Den Purge MKS N&D&V 0~20L/min. 270 246 ? ΕX H2O filter MFC1 -1>< Set Pressure Set Flow Rate 02 02 GN2 -DX Purge P = Pressure Gauge -1281-Filter monitor ~0.5L/min KLM **4**−D&C PD = Pressure Gauge : Diaphragm Seal Type ΕX EX2 🛉 Purge APT = Absolute Pressure Transducer H2O . × DPT = Differential Pressure Transducer monitor Nafion DPS = Dew Point Sensor ~0.5L/min <Pump⊢ Small Tank MFC2 -1001 Paraffin TOP EX = Exhaust, EX1=Pressure Control, EX2=Purge Dryer ->>> 0.5 L/min. FM = Area Flow Meter 5L Metal Bellows Pump 0~1L/min. MFC = Mass Flow Controller MB-601(Single) Oxygen-F From LN2 CE Purge S = Solenoid Valve EX2 4 4 O2 Cal. (1/4) = Pipe , Valve or Joint Size 1/4 inch. MFC5 O2 Sensor Pressure at flow rate = 4.5 L/min. 20240822R9 1~20cc/min. 20240529R8, 20240515R7 MFC3 oxyIQ P1 = 0.004 MPa = 4kPa=40 mbar DF-150E $P2 = 1.5 \text{ kPa} = 15 \text{ mbar}(0 \sim 30 \text{ mbar})$ 20240315R6, 20231225R5 SERVOMEX 0.5 L/min. MB-601(Single) Flow OUT DPT1 = 15.3 mbar=1.53kPa 20231006R4, 20230929R3 (SLM) (MPaA) (MPaA) 0~1L/min. Pmax=±7kPa DPT2 = 159 mmH2O = 15.6 mbar=1.56kPa (0~30mbar) 20230927R2、20230926R1 71.60 0.101 0.101 Max. Pressure 27.17 0.101 0.304 DPT2 - DPT1 = 0.3 mbar Belle 2 CDC 20230925

0 7

Max. Flow

Vacuum -77.54 kPaG

CDC Gas System

Current layout (including many LS1 improvements)

Simplified and somewhat outdated principle

4

Gas Recirculation Rate

Gas Recirculation Rate

- Use number of CDC hits that are not associated with tracks as an indicator of CDC background
- Varies greatly with machine and beam conditions

Evolution of Beam-related CDC Background in 2022/2024

- Use number of CDC hits that are not associated with tracks as an indicator of CDC background
- Varies greatly with machine and beam conditions
 - difference of more than a factor of two between b36 (2022b, damaged collimators) and b41 (2024b)
- Hit rates already reach >100 kHz/wire when trying to approach $L = 0.5 \times 10^{35}$ cm⁻²s⁻¹

250 200 150 0 0 06/27 07/04 07/18 07/18 07/25

carsten.niebuhr@desy.de

- Goal: reproduce pre-Belle result
- So far, no evidence of ageing at 66 mC/cm accumulated charge
- If unacceptable ageing rate is observed, repeat test with a hydrocarbon-free gas mixture
- Caveats
 - difficult to achieve multi-C/cm regime with this set-up
 - gas volume exchange rate similar to CDC, but
 - no recirculation (injection of fresh He/C₂H₆)
 - very low ratio of irradiated volume to test chamber volume compared to CDC

7

Background Dependence of Run Gain

• Pre-LS1 run gain found to be significantly dependent on chamber current

Background Dependence of Run Gain

(1) Estimated gain reduction due to voltage drop across resistor in HV distribution

(2) H.Ozaki: "I calculated the voltage drop [due to space charge] by solving the Poisson eq. for a geometry similar to Belle2 CDC (multi-square cells w/o staggering), instead of using a simple formula derived for a cylindrical tube in 1969."

- Pre-LS1 run gain found to be significantly dependent on chamber current
- Ozaki-san (KEK) tried to model this dependence, taking into account
 - (1) gain reduction due to **voltage drop** across resistor in HV distribution
 - significant improvement expected from resistor replacement in LS1

(2) **space charge** as a function of ion mobility μ

- (1)+(2) can reasonably reproduce pre-LS1 gain drop assuming $\mu = 1.4 \sim 6 \text{ cm}^2/\text{V/s}$
- some tension with estimated value of $\mu = 10 \sim 20$ cm⁻²/V/s in He/C₂H₆ estimated by Rob Veenhof (CERN)

Background Dependence of Run Gain

Expected slope change due to resistor replacement

(1) Estimated gain reduction due to voltage drop across resistor in HV distribution

(2) H.Ozaki: "I calculated the voltage drop [due to space charge] by solving the Poisson eq. for a geometry similar to Belle2 CDC (multi-square cells w/o staggering), instead of using a simple formula derived for a cylindrical tube in 1969."

- Pre-LS1 run gain found to be significantly dependent on chamber current
- Ozaki-san (KEK) tried to model this dependence, taking into account
 - (1) gain reduction due to **voltage drop** across resistor in HV distribution
 - significant improvement expected from resistor replacement in LS1

(2) **space charge** as a function of ion mobility μ

- (1)+(2) can reasonably reproduce pre-LS1 gain drop assuming $\mu = 1.4 \sim 6 \text{ cm}^2/\text{V/s}$
- some tension with estimated value of $\mu = 10 \sim 20$ cm⁻²/V/s in He/C₂H₆ estimated by Rob Veenhof (CERN)
- Contrary to expectation, no significant change in slope seen after LS1
 - i.e. no visible effect of resistor exchange
 - \Rightarrow so far have only partial understanding of the gain drop

September 26th, 2024 CDC Operational Issues

carsten.niebuhr@desy.de

Zoom in: Short-term Effect of Injection on CDC Gain

Worst conditions reached at the end of 2022b

 $I_{HER} = 1035 \text{ mA}, \text{ Q} = 1.7 \text{ nC}, \text{ rep rate} = 25 \text{ Hz}$ $I_{LER} = 1293 \text{ mA}, \text{ Q} = 2.0 \text{ nC}, \text{ rep rate} = 21 \text{ Hz}$ $n_{\text{bunch}} = 2346, 2$ -bunch injection for both beams

- Level of injection background varies greatly with time and injection parameters, e.g.
 - bunch charge; 1- or 2-bunch injection; repetition rate (so far limited to 25 Hz per beam); injection duty cycle
- Generally very similar time dependence before and after LS1
 - typically takes 10-20 ms to return to base level

- However, due to the reduced beam lifetime caused by the Touschek effect, to achieve the target beam currents, the bunch charge must be increased, the 2-bunch injection mode must be used consistently, and a high injection duty cycle is required
- Note: Doubling repetition rate to 2x50 Hz being considered for LS2
 - $\Rightarrow \overline{\Delta t_{inj}} = 10 \text{ ms}$, i.e. will never operate in stable regime

LS2 Machine Upgrade Plans under Consideration

Requested upgrade during LS2

Gain 🗸	ltem v	Start timing and duration $$	Cost 🗸	/	Overview ~	Prio	rity	~	Comments ~
Increase beam current	Linac current reinforcement	Under estimation	~6B JPY		Doubling the injection current e.g. by increasing the repetition rate for both electron and positron beams.	**	*		$2x25 Hz \rightarrow 2x50 Hz$
Increase beam current	High power RF reinforcement	Start: 2029 or later Duration: half of year or more	~2B JPY		Increase max. HER current to over 2.0A by adding additional RF stations, reinforcing the SCC cooling system, and installing more HOM dampers.	**	*		
Stabilize operation	Linac LLRF timing system upgrade	Under estimation	~2B JPY		Improve the stability of the beam injection by updating the LLRF control system	**	*		
Stabilize operation	Mechanical isolation of BPM and Q magnet in Tsukuba straight line	In LS2 Duration: about 1 year	0(0.1B) JPY		Mechanically isolate the BPM and the quadrupole magent near the sextupole magnet in order to eliminate optical disturbances caused by thermal deformation of the beam pipe due to synchrotron radiation	**	*		
Stabilize operation	Mechanical isolation of BPM and Q magnet in arc sections	Can be done step-by-step in normal shutdowns. Duration: multiple years	~1B JPY		Mechanically isolate the BPM and the quadrupole magent near the sextupole magnet in order to eliminate optical disturbances caused by thermal deformation of the beam pipe due to synchrotron radiation	**			Effectiveness is currently under review. Initially, we would like to proceed with modifications only in the Tsukuba straight section to check the effects
Stabilize operation	Improve air conditioning in power supply building	Under estimation	~1B JPY		Due to the excessively high room temperature in the power supply building, the output of the magnet power supply becomes unstable (especially in June)	**			We should first consider the idea of continuous operation through the New Year period (no winter shutdown) to eliminate the need for operations during warmer seasons.
Stabilize operation	Fast MR BPM readout electronics	Under estimation	~1.6B JPY		Renew the BPM readout circuits for measures against aging and faster beam tuning	*			

Other possible ideas under investigation

Gain 🗸	~	ltem	~	Start time and duration	~	Cost	~	Overview	~	Comments ~
Increase beam current	t	Upgrade LINAC RF gun		Under estimation		Under estimation	1	Upgrade RF gun for lower emittance in electron beam		Backup plan in case the performance of the current electron gun does not improve.
Increase beam current	t	HER straight BT line		Under estimation		Under estimation	ı	Gain and necesity are to be investigated		Need arrangement with PF and PF-AR
Increase specific luminosity		Optimization of beam crossing angle with crab cavity		Under estimation		Under estimatior	1	Effectively reduce the beam crossing angle with crab cavity. Effectiveness and feasibility are to be investigated.		

Background Extrapolation before and after LS2

Setup	Before LS2	Target	Design
$\beta_{\rm v}^*$ (LER/HER) [mm]	0.6/0.6	0.27/0.3	0.27/0.3
$\beta_{\rm x}^{*}$ (LER/HER) [mm]	60/60	32/25	32/25
$\mathcal{L} \ [imes 10^{35} \ { m cm}^{-2} { m s}^{-1}]$	2.8	6.0	8.0
I(LER/HER) [A]	2.52/1.82	2.80/2.00	3.6/2.6
$\bar{P}_{\rm eff.}$ (LER/HER) [nPa]	48/17	52/18	133/133
$n_{\rm b}$ [bunches]	1576	1761	2500
$\varepsilon_{\rm x}$ (LER/HER) [nm]	4.6/4.5	3.2/4.6	3.2/4.6
$\varepsilon_{ m y}/\varepsilon_{ m x}$ (LER/HER) [%]	1/1	0.27/0.28	0.27/0.28
$\sigma_{\rm z}$ (LER/HER) [mm]	8.27/7.60	8.25/7.58	6.0/6.0
CW	ON	OFF	OFF

Figure 3.4: Estimated Belle II background composition for predicted beam parameters Before LS2. Each column is a stacked histogram of BG rates from dedicated MC samples scaled with average Data/MC ratios listed in Table 3.3. The red numbers in rectangles are detector safety factors, showing that Belle II should be able to operate safely until a luminosity of $2.8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ with some important caveats, discussed in the text.

- In recent years we have achieved reasonable agreement between measured and simulated beam-induced backgrounds (excl. injection...)
- Allows reasonably good prediction of background levels up to LS2
- However, no optics yet available for post-LS2 machine setup
- Different scaling factors of scenarios account for associated uncertainties

Figure 3.5: Estimated beam background rates in Belle II for After LS2 operation at luminosity of $6.0 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$. The numbers in rectangles are detector safety factors for Scenario-2.

https://doi.org/10.1016/j.nima.2023.168550

Future Operating Conditions very difficult to predict

Future Operating Conditions very difficult to predict

Future Operating Conditions very difficult to predict

- With improved control of CDC operating conditions in the future (e.g. gas conditions), the expected performance degradation up to LS2 may perhaps remain acceptable if pre-Belle ageing results are confirmed
- However, unless machine conditions magically improve dramatically after LS2, the deterioration in CDC performance seems likely to become unacceptably large in a period when the bulk of the Belle II data is expected to be collected

... assuming 6% per C/cm (pre-Belle study)

~ O(3.5 - 7) C/cm $\Rightarrow \Delta G/G = O(20 - 40)\%$

~ O(7.5 - 15) C/cm $\Rightarrow \Delta G/G = O(45 - 90)\%$

Summary

- We should be prepared that tracking, PID and triggering might soon be compromised by background related performance degradation in the CDC
- Have to develop mitigation strategies now, because changes will require studies and a lot of preparation time
- Given the potential impact on the Belle II physics program the person power available for this highly important work should be increased

CDC Operation in 2024

September 26th, 2024 CDC Operational Issues

carsten.niebuhr@desy.de