The LHC-forward experiment

Elena Gensini

The LHCf experiment

Experiment at Large Hadron Collider (LHC)

Provide calibration data for hadronic interaction models used in Extensive Air Shower (EAS) simulations

Main purpose of LHCf

Ultra High Energy Cosmic Rays (UHECRs) physics

- Particles from outer space 99% nuclei: p, He, ...
- 1% e⁻, γ , ν , antimatter (e⁺, \overline{p} , $\overline{\nu}$)
- Inclusive CR differential flux vs Energy ٠

- Particles from outer space 99% nuclei: p, He, ...
- 1% e⁻, γ , ν , antimatter (e⁺, \overline{p} , $\overline{\nu}$)
- Inclusive CR differential flux vs Energy

$$\begin{split} J(E) &= \frac{dN}{dS\,d\Omega\,dt\,dE} \to J(E) \simeq k \left(\frac{E}{1\,{\rm GeV}}\right)^{-\alpha} \\ \alpha \sim 2.6 \div 3.3 \end{split}$$

Accurate measurements of differential flux and mass composition of *Ultra High Energy Cosmic Rays*, UHECRs (E>10¹⁸ eV)

HOW DO WE DETECT CRs?

- Particles from outer space 99% nuclei: p, He, ...
- 1% e⁻, γ , ν , antimatter (e⁺, \overline{p} , $\overline{\nu}$)
- Inclusive cosmic ray differential flux vs Energy
- $J(E) = \frac{dN}{dS \, d\Omega \, dt \, dE} \rightarrow J(E) \simeq k \left(\frac{E}{1 \, {\rm GeV}}\right)^{-\alpha} \quad \text{for } \alpha \sim 2.6 \div 3.3$

Small detectors ($S{\sim}1{
m m^2}$) on ISS, satellites, balloons

- Particles from outer space 99% nuclei: p, He, ...
- 1% e⁻, γ , ν , antimatter (e⁺, \overline{p} , $\overline{\nu}$)
- Inclusive cosmic ray differential flux vs • Energy
- 10¹⁹ -(m⁻² s⁻¹ sr⁻¹ eV^{1.5}) RHIC (p-p) Tevatron (p-p) 7 TeV 14 TeV HiRes-MIA HERA (γ-p) LHC (p-p) 10¹⁸ HiRes I HiRes II 每大大大大 委 大大大大 $1 \text{ event}/(\text{m}^2 \text{year})$ Auger 2009 10¹ E^{2.5} J(E) 10¹⁶ Galactic CRs Extra Galactic CRs Scaled flux $J(E) = \frac{dN}{dS \, d\Omega \, dt \, dE} \to J(E) \simeq k \left(\frac{E}{1 \, \text{GeV}}\right)^{-\alpha}$ ATIC KASCADE (QGSJET 01) $\alpha \sim 2.6 \div 3.3$ KASCADE (SIBYLL 2.1) PROTON 1 event/(km²year) RUNJOB **KASCADE-Grande 2009** 1 event/(km²century) 10¹⁴ Tibet ASg (SIBYLL 2.1) **UHECRs** 10¹³ 10¹³ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁴ 10¹⁸ 10¹⁹ 10²⁰ 10²¹ Direct CRs detection Energy (eV/particle) Small detectors ($S \sim 1 \text{m}^2$) Indirect CRs detection on ISS, satellites, balloons

 10^{3}

10²

Equivalent c.m. energy $\sqrt{s_{pp}}$

 10^{4}

(GeV)

10⁵

10⁶

Indirect detection of UHECRs

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S ${\sim}10 \div 100 \ km^2)$

Indirect detection of UHECRs

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S $\sim 10 \div 100 \text{ km}^2$)

Indirect detection of UHECRs

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S $\sim 10 \div 100 \text{ km}^2$)

We can extract CR mass composition

Indirect detection of UHECRs

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S $\sim 10 \div 100 \text{ km}^2$)

Comparison between data of EAS detection experiments and outputs of EAS simulation We can extract

CR mass composition

PROBLEM!

Mass composition measurements of CRs with E>10^{16÷17}eV are affected by a large systematic uncertainty

Indirect detection of UHECRs

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S $\sim 10 \div 100 \text{ km}^2$)

Comparison between data of EAS detection experiments and outputs of EAS simulation

> We can extract CR mass composition

PROBLEM!

Mass composition measurements of CRs with E>10^{16÷17}eV are affected by a large systematic uncertainty

WHY?

EAS simulations based on hadronic interaction models

affected by

large **theoretical** uncertainties at such high energies

detection of secondary particles of the Extensive Air Shower (**EAS**)

with large arrays of detectors on ground level (total S ${\sim}10 \div 100~km^2)$

Comparison between data of EAS detection experiments and outputs of EAS simulation

> We can extract CR mass composition

PROBLEM!

Mass composition measurements of CRs with E>10^{16÷17}eV are affected by a large systematic uncertainty

LACK OF CALIBRATION DATA

WHY?

EAS simulations based on hadronic interaction models

large **theoretical** uncertainties at such high energies

Calibration of hadronic interaction models

LHC collisions mimic CR - atmospheric nucleus interactions

Calibration of hadronic interaction models

LHC collisions mimic CR - atmospheric nucleus interactions

Region of interest for the study of EAS development → the **energy flux** is mainly focused in the **forward** region

Calibration of hadronic interaction models

Region of interest for the study of EAS development → the **energy flux** is mainly focused in the **forward** region

Study of the hadronic interaction products in order to calibrate the models used in EAS simulations

Study of the hadronic interaction products in order to calibrate the models used in EAS simulations

emitted at $\theta < 0.03^{\circ}$

Study of the hadronic interaction products in order to calibrate the models used in EAS simulations

Study of the hadronic interaction products in order to calibrate the models used in EAS simulations

The detector

ARM2

Upgrade-Arm #1 detector

Total depth of the towers: ~21 cm, ~44 X_0 , ~1.6 λ_I

ARM1

200 Longitudinal size [mm]

150

The detector

Total depth of the towers: ~21 cm, ~44 X_0 , ~1.6 λ_I

Energy resolution < 2% for γ above 100 GeV Position resolution < 40 μ m for γ above 100 GeV

150

200 Longitudinal size [mm]

> Energy resolution < 2% for γ above 100 GeV Position resolution ~ 200 μ m for γ above 100 GeV

26/11/2024

Longitudinal size [mm]

The Arm2 detector

The Arm2 detector

- 16 layers of GSO scintillator (for each tower): energy reconstruction
- 8 <u>silicon microstrip</u> layers, 4 x-views and 4 y-views: reconstruction of the shower <u>transverse profile</u>

An event in Arm2

Event: γ candidate in Small Tower

26/11/2024

An event in Arm2

Event: *n* candidate in Small Tower

EM-hadronic shower discrimination

EM-hadronic shower discrimination

Total depth of the towers: $\sim 21 \text{ cm}$, $\sim 44 X_0$, $\sim 1.6 \lambda_I$

Every information from every GSO and silicon layers of Arm2

Discriminate between **hadronic** and **electromagnetic** shower

 \downarrow

Discriminate between incident hadrons (such as neutrons) and incident photons Qualitative features of showers

- EM showers: early development in the calorimeter and longitudinally cointained in \sim 20-30 X_0
- Hadronic showers: late development in the calorimeter and longitudinally contained in $\sim 10 \lambda_I$

EM-hadronic shower discrimination

26/11/2024

Misure di composizione (UHECR)

26/11/2024

Misure di composizione (UHECR)

 $X_{max} \rightarrow$ profondità di max sviluppo sciame

Modelli di interazione adronica (Muon Puzzle)

26/11/2024

