

Machine Learning Operations (MLOps)

Introduction to MLOps for experiment tracking

Luca Clissa

Researcher @ DIFA - UNIBO luca.clissa2@unibo.it

ML model in production

- Many ML projects fail before being deployed to production
- Why is it so difficult?
- What can we do?

ML projects pipeline

Machine Learning projects involve several **stages** that share a common **goal**:

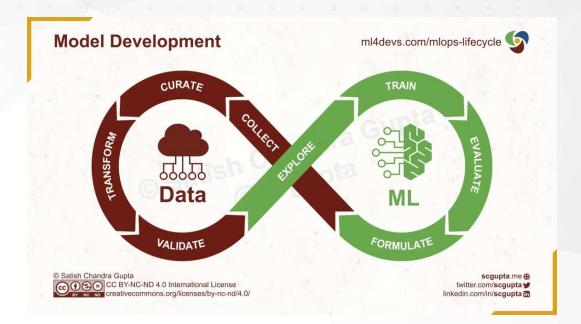
Stages

Data processing: collection, transformation, validation, exploration

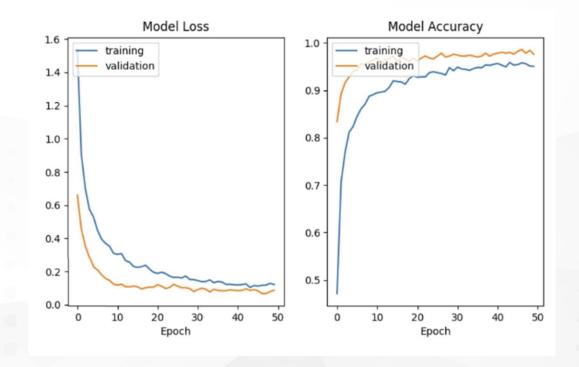
Model development: training, evaluation, formulate new hypoothesis to test...

Goal

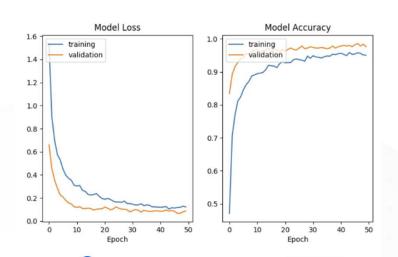
Build model that works well in production, is portable and reproducible



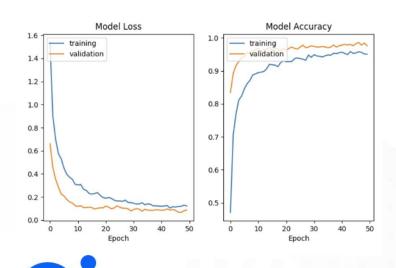
What do we need?

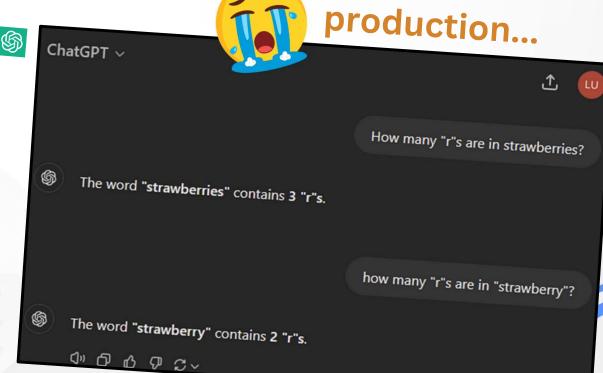


What happens in practice



What happens in practice





What is MLOps?

66

MLOps is about maintaining the trained **model performance*** in production.

This may deteriorate due factors we cannot control, so it is key to monitor, update and roll out new models when necessary

model performance* = metrics, but also latency, SLA, ...

DataML = Data + ML/Code

MLOps = DataML + DevOps

+ Algorithm

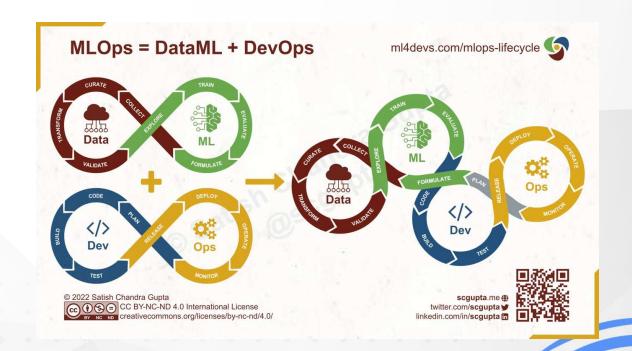
+ Software

+ Weights

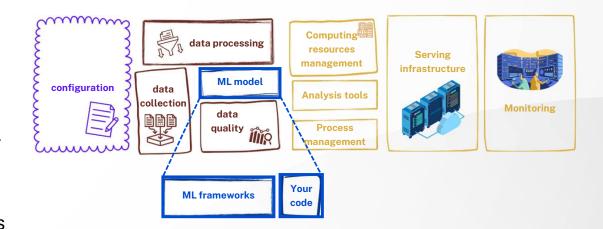
+ Infrastructure

+ Hyperparameters

+ CI/CD



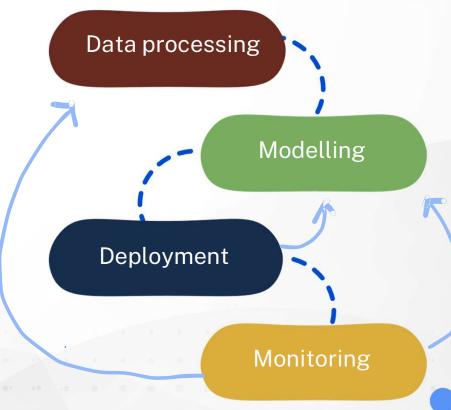
- MLOps combines two key elements:
 - ML model
 - software engineering
- Good news: ready-to-use frameworks for most components
- Downside: hard to keep up with new tools
 - → technical debt [1]



[1] D. Sculley et. al. Hidden Technical Debt in Machine Learning Systems, NIPS 2015

MLOps pipeline

MLOps is a multi-stage, iterative process

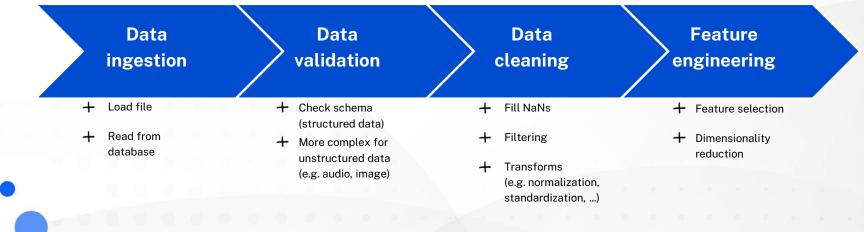


Data processing: best practice

- Data processing is key to ML success
 - quality control: garbage in, garbage out
 - Exploratory Data Analysis (EDA) enables
 understanding content and challenges
 - tracking, monitoring and reproducibility
- Paradigm shift: model-centric to data-centric AI [2]

	Model-driven ML	Data-driven ML
Fixed component	Dataset	Model Architecture
Variable component	Model Architecture	Dataset
Objective	High accuracy	Fairness, low bias
Explainability	Limited	Possible

f(1) = 11



[3] https://sites.google.com/princeton.edu/rep-workshop/

Documentation

- track every design decision
- make sure to include full descriptions! --> easy to forget, soon out of control
- **Provenance**: where does data come from?
- Lineage: how data is manipulated?

Versioning

- input data DVC
- · code git/GitHub

Reproducibility:

Paramount to keep track and document every step of our processing to ensure reproducibility!

Controlled software envs

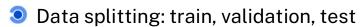
- software libraries e.g. conda/pip
- computing environment containers

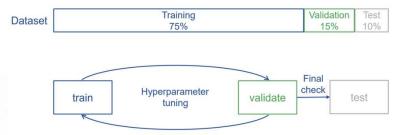
Notebooks: good practice

- Linear flow of execution
- Cells as logic units: little amount of code
- Use markdown cells for documentation
- Refactor reusable code into packages
- Set parameters on top: easy to find and edit
 --> notebooks as a function
- Clean notebook before commit to repo

"quick&dirt" exploratory work is OK! ...but remember to tidy up when sharing

Modelling: good practice

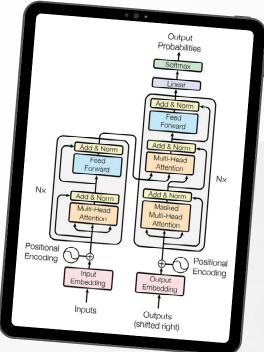




Balanced sampling useful for preserving distributions (fairness)

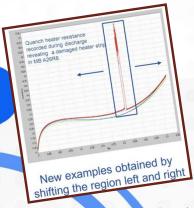
Consider a binary classification problem with a dataset composed of 200 entries. There are 160 negative examples (no failure) and 40 positive ones (failure).



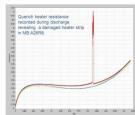


Modelling: good practice

- Data splitting: train, validation, test
- Balanced sampling useful for preserving distributions (fairness)
- EDA is key to understand training requirements & challenges
 - class imbalance
 - rare events
 - metrics

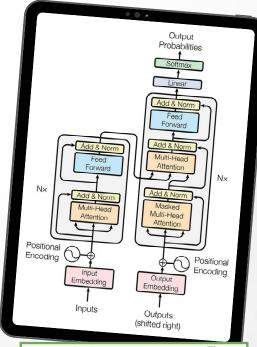


e.g. binary classification: 3130 healty signals (Y=0) VS 112 failures (Y=1)



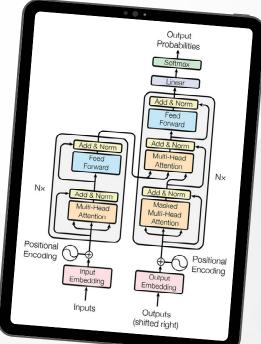
[4] C. Obermair, Extension of Signal Monitoring Applications with Machine Learning, Master Thesis, TU Graz

- --> naive classifier (always predict 0) would be 97% accurate!
- --> better look at precision/recall/F1-score instead
- --> resort to sampling (upsampling/downsampling) or collect new data
- --> data augmentation can also help



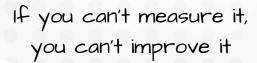
Modelling: good practice

- Data splitting: train, validation, test
- Balanced sampling useful for preserving distributions (fairness)
- EDA is key to understand training requirements & challenges
 - class imbalance
 - rare events
 - · metrics
- Experiment tracking
 - pen & paper
 - spreadsheets
 - dedicated frameworks



Modelling: error analysis

- Looking at wrong predictions help debugging training
- Set reference metrics to compare experiments
- Exploit tracking framework functionalities
 - Bayesian search
 - parameter importance
 - parallel coordinates plot



Deployment & Monitoring

When the model is ready we can finally release it in production!

However, this is not the final step --> MLOps is a cycle!

CI/CD

- Production is only a checkpoint between development stages
- may want to keep improving the model
 - try different configs/architectures
 - o re-train as new data comes in

Monitoring

- · always keep an eye on performance, as data shift may impact your application
- · model metrics
- infrastructure metrics
 - errors, resource utilization, ...

Conclusion

- MLOps is key to ensuring solid ML development and reproducibility
 - It seems overdoing at first, but it pays in the long term
- Many tools can help, difficult to choose one...hard to say what is best
 - Pick one and get proficient with that
 - But leave a door open to exploration in case you hit roadblocks

	Development ML	Production ML
Objective	High-accuracy model	Efficiency of the overall system
Dataset	Fixed	Evolving
Code quality	Secondary importance	Critical
Model training	Optimal tuning	Fast turn-arounds
Reproducibility	Secondary importance	Critical
Traceability	Secondary importance	Critical

Any questions?

