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Outline today’s “Tensor network machine learning”

Speaker: Daniel Jaschke
Quantum-inspired TN MLAI

Unsupervised / Generative

Neural Networks &
Deep learning

Quantum-inspired
methods

Quantum Machine
Learning (QML)

Supervised machine learning



  

What are “quantum-inspired” methods?
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Method: tensor network (TN) algorithms

- Quantum wave function represented by TN
- Compress entanglement (quantum correlations)

Method or idea for quantum technology used on a classical problem without a QPU

Problem: supervised learning

- Model represented by TN
- Compress information



  

What are “quantum-inspired” methods?
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Method: tensor network (TN) algorithms

- Quantum wave function represented by TN
- Compress entanglement (quantum correlations)

Compression example
Singular Value Decomposition

Singular values kept:
1549 versus 50 versus 15
(1549: no compression)
 

Method or idea for quantum technology used on a classical problem without a QPU

Problem: supervised learning

- Model represented by TN
- Compress information



  

Quantum TEA: where do we come from?
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Can I just have tensor 
networks for quantum 
information?

How to emulate a digital 
quantum circuits?

+

Quantum Tensor network Emulator Applications
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How to emulate a digital 
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+

Quantum Tensor network Emulator Applications

How to solve the 
Schrödinger equation? +

Can we do tensor network machine 
learning? … soon as well public. +

And another for 
performance



  

The one-pixel example
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Data set:
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Guess TN
Optimization Inference

Value: 18
Label: 1

Value: 34
Label: 1
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Value: 220
Label: 0

Data set:
Training &

test

Feature
map

Guess TN
Optimization Inference

Value: 18
Label: 1

Value: 34
Label: 1

Label link

Feature link

Training data

Opt.

argmax 1
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Feature map: list of vectors

Inference

Outer product of vectors (many-body
state without quantum correlations)

One sample:
(2x2 pixels)

Based on / original work: E. Miles Stoudenmire and David J. Schwab, Supervised Learning
With Quantum-Inspired Tensor Networks, arXiv:1605.05775v2 (2017)

Full-scale algorithm

label

index data set i

argmax

tTrue labels
for a data set: index data set i

label
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Based on / original work: E. Miles Stoudenmire and David J. Schwab, Supervised Learning
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→One sweep optimizes each nearest-neighbor tensor-pair once 
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index training data i
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Feature map: list of vectors

Inference

Outer product of vectors (many-body
state without quantum correlations)

One sample:
(2x2 pixels)

Based on / original work: E. Miles Stoudenmire and David J. Schwab, Supervised Learning
With Quantum-Inspired Tensor Networks, arXiv:1605.05775v2 (2017)

Optimization step: (no, no backpropagation & gradient descent)

→One sweep optimizes each nearest-neighbor tensor-pair once 

→Calculate the local gradient for the two-site tensor

label

index training data i

+

Full-scale algorithm

tTrue labels
for a data set:

t(     )-

index data set i

label

label

index data set i

argmax



  

Hyper-parameters, libraries, and hardware
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Ansätze

What do we want to bechmark / tune?

Parameters in ansatz:

- Bond dimension (compression)
- Precision: double, single, half
- Update 1- or 2-tensors together
- Mapping 2d image
- Label link or “pure overlap”

Libraries & hardware

- CPU versus GPU
- numpy/cupy versus torch

MPS 

TTN

Machine: 
leonardo booster partition with A100 GPU



  

Reference point: MNIST
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Training: 2,000
Training batch: 1000

Test: 2,000
Averaged: no (1 run)

MNIST: 70,000

Training precision: 96.2%
Test precision: 92.3% *
Walltime: 1372 seconds

Training: 2,000
Training batch: 1000

Test: 2,000
Averaged: no (1 run)

MNIST: 70,000

- compression rate 
quantum correlations 
as quantum-inspired 
explanation

- Degrees of freedom 
(DOF) or memory-
need or 
expressability

DOF < 150,000 
Memory < 0.54 MB

DOF < 10,000

DOF < 36,000

* and one can do better, see Stoudenmire & Schwab, arXiv:1605.05775v2 with > 99%



  

Numpy versus torch, CPU versus GPU
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Torch: despite machine learning,
no backpropagation used here

Continue with torch, GPU, and 

Time to run simulation

Prepare Optimize TN Test



  

2d image … how to get to a 1d system?
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Hilbert curve ZigZag map Snake map

Test accuracy
91.05%

Test accuracy
91.35%

Test accuracy
90.9%

Test accuracy
91.05%

Test accuracy
91.45%

Test accuracy
91.15%



  

Single-tensor updates
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Two-tensor update Single-tensor update



  

Single-tensor updates
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Two-tensor update

Test accuracy: 91.05%
Time: 20.59s 

Single-tensor update

Test accuracy: 91.05%
Time: 14.43s



  

Apply lessons learned to the full data set

Speaker: Daniel Jaschke
Quantum-inspired TN MLAI

Training: 60,000
Training batch: 20,000

Test: 10,000
Averaged: no (1 run)

MNIST: 70,000

Loss history

Accuracy:
94.55%

Single-tensor update 



  

Bonus: binary label optimizations
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Label-link & argmax

(a, b)

                 argmax(..)

0 if a > b else 1

One-dimensional label link
& rounding

(a)

                 round(..)

0 if a < 0.5 else 1

Move label link

SVD no longer needed
(no Krylov space needed)

Full and native support for
half precision data type

SVD



  

Bonus: binary label runtimes
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One-dimensional label link
& rounding

… with SVD

Accuracy:
99.75%

T = 7.6s

One-dimensional label link
& rounding

… without SVD

float64 float32 float16

Accuracy:
99.75%

T = 6.9s

Accuracy:
99.7%

T = 7.8s

Accuracy:
99.55%

T = 4.4s

Accuracy:
99.55%

T = 4.2s

Accuracy:
99.4%

T = 4.3s

M
em

ory-friendly



  

Conclusion and outlook

Speaker: Daniel Jaschke
Quantum-inspired TN MLAI

Also integrate jax and tensorflow as in
DJ et al., arXiv 2409.03818

Explore high-energy data and follow
path of FPGA triggers

See L. Borella, Alberto Coppi, et al.
arxiv:2409.16075

Quantum-inspired machine learning for supervised ML tasks

Hyper-parameters from quantum many-body physics

Option for GPU support + option to switch to torch



  

Backup slides
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Pooling layer
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Pooling: 28x28 → 16x16

Pooling: 16x16 → 8x8



  

Modularity of the library

Speaker: Daniel Jaschke
Quantum-inspired TN MLAI

Why do you 
need another 

tea flavor? Can we use GPUs? … no, because ... Can we use jax? … no,  ...

Major update
qtealeaves v1.0.0+

How to integrate new technology in a library?



  

MPS (two-tensor update) versus TTN (single-tensor)

Speaker: Daniel Jaschke
Quantum-inspired TN MLAI
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