Quantum-inspired tensor-network machine learning: finding optimal hyperparameters, libraries, and hardware

<u>Daniel Jaschke</u>, Alberto Coppi, Marco Ballarin, and Simone Montangero

Outline today's "Tensor network machine learning"

What are "quantum-inspired" methods?

Method or idea for quantum technology used on a classical problem without a QPU

Method: tensor network (TN) algorithms

AI @|

Quantum wave function represented by TN Compress entanglement (quantum correlations)

Problem: supervised learning

Model represented by TNCompress information

(INFN

Speaker: Daniel Jaschke Quantum-inspired TN ML

What are "quantum-inspired" methods?

Method or idea for quantum technology used on a classical problem without a QPU

Method: tensor network (TN) algorithms

Quantum wave function represented by TN
Compress entanglement (quantum correlations)

Compression example Singular Value Decomposition

Singular values kept: 1549 versus 50 versus 15 (1549: no compression)

Speaker: Daniel Jaschke Quantum-inspired TN ML

Problem: supervised learning

Model represented by TNCompress information

Quantum TEA: where do we come from?

Cuantum MATCHA TEA

Quantum Tensor network Emulator Applications

A @ INF

Speaker: Daniel Jaschke Quantum-inspired TN ML

Quantum TEA: where do we come from?

universitä

Speaker: Daniel Jaschke Quantum-inspired TN ML

A @ INF

Quantum TEA: where do we come from?

universitä

Speaker: Daniel Jaschke Quantum-inspired TN ML

AI @ INF

The one-pixel example

AI @ INFN

-[X]-

Speaker: Daniel Jaschke Quantum-inspired TN ML

The one-pixel example

The one-pixel example

Full-scale algorithm

Full-scale algorithm

Full-scale algorithm

Hyper-parameters, libraries, and hardware

Reference point: MNIST

-57

A @ INFI

Training: 2,000 Training batch: 1000 Test: 2.000 Averaged: no (1 run) MNIST: 70,000

INFN

Speaker: Daniel Jaschke Quantum-inspired TN ML

Numpy versus torch, CPU versus GPU

2d image ... how to get to a 1d system?

Single-tensor updates

A @ INFN

Speaker: Daniel Jaschke Quantum-inspired TN ML

Single-tensor updates

Apply lessons learned to the full data set

Bonus: binary label optimizations

Speaker: Daniel Jaschke Quantum-inspired TN ML

Bonus: binary label runtimes

H-TX

AI @ INFI

Speaker: Daniel Jaschke Quantum-inspired TN ML

Conclusion and outlook

AI @ INF

Quantum-inspired machine learning for supervised ML tasks

Hyper-parameters from quantum many-body physics

Option for GPU support + option to switch to torch

Also integrate jax and tensorflow as in DJ et al., arXiv 2409.03818

Explore high-energy data and follow path of FPGA triggers

See L. Borella, Alberto Coppi, et al. arxiv:2409.16075

Speaker: Daniel Jaschke Quantum-inspired TN ML

Backup slides

-[X]-

Speaker: Daniel Jaschke Quantum-inspired TN ML

H-X

M

AI @ INFN

Pooling layer

Modularity of the library

MPS (two-tensor update) versus TTN (single-tensor)

Speaker: Daniel Jaschke Quantum-inspired TN ML

AI @ INF

