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VHE γ-ray astrophysics

Credits: K. Kosack

• At the most energetic extreme of 
the EM spectrum


• γ-rays due to non-thermal 
emission of accelerated particles


• Study of galactic and 
extragalactic cosmic accelerators

Gamma-ray burst

Credit: ESO/A. Roquette

Supernova remnant

Credit: NASA, ESA

Galactic

Active Galactic Nuclei (AGN)

Credits: P. Grespan

Extragalactic
Transient events
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VHE γ-ray astrophysics

• Effective and high-performing analysis of γ-ray data 
needed for different science cases:

• Distant sources

• Specific AGN types


• e.g. Flat Spectrum Radio Quasars, Extreme blazars

• Fundamental physics research


• e.g. Dark matter, axion like particles, intergalactic 
magnetic fields

• VHE observations exploit creation of extensive air showers initiated by the incoming 
gamma-ray

Credits: CTAO
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Extensive Air Showers

Electromagnetic showers Hadronic showers

In the cameraIn the camera

https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html
Credits: T. Miener Credits: T. Miener5
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Imaging atmospheric Cherenkov technique

Credits: L. Romanato

• Air showers initiated by VHE γ-rays


• Detection of Cherenkov light produced 
by secondary particles


• Image recorded by PMT camera

• Use of atmosphere as a calorimeter

• Energy of primary particle deposited 

in the form of cascades of secondary 
particles


• More telescopes improve the 
reconstruction
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Current generation of IACTs

LST-1, part of future CTAO

La Palma, Canaries

23 m diameter

4.3° FoV
Eth 20 GeV 

H.E.S.S. VERITAS

MAGIC

La Palma, Canaries

17 m diameter

3.5° FoV
Eth 50 GeV 

Namibia

4x12, 1x28 m diameter

4x5°, 1x3.5° FoV
Eth 30 GeV 

Arizona, USA

12 m diameter

3.5° FoV
Eth 100 GeV 
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Next generation of IACTs: CTAO
• 5-10 times better sensitivity wrt current IACTs


• Energy range from 20 GeV to 300 TeV
• Improved angular and energy resolution


• Two sites: Northern and Southern Hemispheres

Low-energy range

•23 m diameter

•4.3° FoV
•Eth 20 GeV 

Medium-energy range

•12 m diameter

•7.5° FoV

•Energy range: 150 GeV - 5 TeV 

High-energy range

•4 m diameter

•10° FoV

•Multi-TeV energies

Credits: CTAO

LST
MST

SST
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IACT event reconstruction
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Aims of event reconstruction:

• Particle type

• Energy

• Incoming direction

Aims and issues

Credits: P. Grespan

Main issue:

Large background from charged 
cosmic-rays (hadronic showers)

Ratio: 1:1000
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Standard data analysis method

Image credits: P. Grespan11



Standard data analysis method

Image credits: P. Grespan12



Image cleaning and parametrization

• Images are cleaned to remove pixels without significant 
signal or related to spurious signals fro electronics and 
identify the shower


• Cleaned images are parametrized as elliptical shapes 
with so-called Hillas parameters

Abe et al., ApJ 956:80, 2023

Credits: A. Fernández Barral
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Image cleaning and parametrization
Size Total number of phe in the image

Width Length of the semi-minor axis of the ellipse

Length Length of the semi-major axis of the ellipse

Center of 

Gravity (CoG)

Coordinates of the weighted average signal in the camera plane

Dist Distance between expected source position and CoG position

Alpha Angle between ellipse major axis and expected source position - CoG line

Source-independent parameters

Source-dependent parameters

TimeRMS Arrival times RMS of pixels surviving image cleaning

Time gradient Slope of linear function used to fit the arrival time distribution of the pixels

Timing parameters

Directional parameters
Asymmetry Sign of the difference between position of brightest pixel and CoG

Image quality parameters
LeakageN Fraction of image size contained in N outermost pixel rings of the camera

Number of 
islands

Number of non-connected pixel groups surviving image cleaning

Related to the primary 
particle energy

Related to the lateral and longitudinal 
development of the shower

Smaller in γ-ray showers

Differentiates between 
shower head-tail

Estimates the fraction 
of signal loss

Larger for hadronic showers 
(usually are more fragmentated)14



Image cleaning and parametrization
Stereo parameters

Shower axis Direction of the shower

Impact parameter Distance between the shower axis and the pointing direction of the telescope

Impact point Impact position of the shower on the ground

Height of shower max
Height at which the number of particles in the EAS is maximum. It depends on the energy of the 
primary particle.

Credits: D. A. Guberman
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Standard data analysis method

Image credits: P. Grespan16



Standard data analysis method

Image credits: P. Grespan16



Standard data analysis method

?

Image credits: P. Grespan16



Different techniques, mostly based on Hillas parametrization or on semi-analytical models

Analysis technique before machine learning

Hillas-parameter based 
analysis


• Relies on MC simulations

• Defines static cuts to 

discriminate between γ and 
hadrons


• Values of image parameters 
are compared with 
expectation values from 
MCs

width and length as good separation parameters, at 
least for size > 200 phe (i.e. E > 100 GeV)

Albert et al. (2008)
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Standard data analysis method

Image credits: P. Grespan

The current 
workflow

classification regression
18



• Based on Random Forests (RF), one for each task

• Collection of uncorrelated decision trees, 

combining their individual results to make the 
prediction


• Event characterized by vector of image 
parameters


• Training on MC γ and real background

• MC and bkg data have to match as much as 

possible the observational conditions of the source 
data 

• e.g. zenith angle, dark/moon nights, 

extragalactic/galactic obs.

Current analysis method: Random Forest

Albert et al. (2008)
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Current analysis method: Random Forest

How does the splitting work?

• Full sample (i.e. full parameter space) in root 

node


• Splitting of each node using on parameter at a 
time and an optimized cut value


• Splitting process stops if


• Events per node below defined limit


• Only events of one class in the node
Albert et al. (2008)
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Identification of particle type
• Best cut value obtained through minimization of the 

Gini index

• Measure of the inequality in two distributions as a 

function of a cut in a variable

Image credits: K. Ishio

Gini =
4Nγ Nh

(Nγ + Nh)2

After split: weighed average of 
Gini in each node

The smaller the Gini, the better the separation

Nodes at same depth
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Identification of particle type
• At each terminal node a hadronness value is assigned 

based on its population (gammas=0, hadrons=1)

 hi =
Nγ ⋅ 0 + Nh ⋅ 1

Nγ + Nh
⇒ hadronness =

1
n

n

∑
i=0

hi

Image credits: K. Ishio
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Identification of particle type

Credits: K. Ishio

• At each terminal node a hadronness value is assigned 
based on its population (gammas=0, hadrons=1)

 hi =
Nγ ⋅ 0 + Nh ⋅ 1

Nγ + Nh
⇒ hadronness =

1
n

n

∑
i=0

hi

Colin et al., ICRC (2009)

Cut to remove 
most of bkg
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https://arxiv.org/abs/0907.0960


Effect of gamma/hadron cut

Hadronness < 0.2

24

 ]2 [ deg2θ

0 0.1 0.2 0.3 0.4

ev
en

ts
N

0

500

1000

1500

2000

2500

3000

3500 Time = 4.37 h

 12.2± = 749.2 
off

 = 4230; NonN

 66.2± = 3480.8 exN

σ) = 127.17off / exSignificance (N

σSignificance (Li&Ma) = 74.1

 0.03 % Crab±Sensitivity = 1.16 

Gamma Rate = 13.28 +- 0.25 / min

Bkg Rate = 2.857 +- 0.047 / min

Preliminary

 ]2 [ deg2θ

0 0.1 0.2 0.3 0.4

ev
en

ts
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Time = 4.37 h

 16.8± = 1410.2 
off

 = 5583; NonN

 76.6± = 4172.8 exN

σ) = 111.12off / exSignificance (N

σSignificance (Li&Ma) = 72.3

 0.03 % Crab±Sensitivity = 1.33 

Gamma Rate = 15.91 +- 0.29 / min

Bkg Rate = 5.378 +- 0.064 / min

Preliminary

 ]2 [ deg2θ

0 0.1 0.2 0.3 0.4

ev
en

ts
N

0

1000

2000

3000

4000

5000
Time = 4.37 h

 19.8± = 1961.6 
off

 = 6345; NonN

 82.1± = 4383.4 exN

σ) = 98.97off / exSignificance (N

σSignificance (Li&Ma) = 68.3

 0.03 % Crab±Sensitivity = 1.49 

Gamma Rate = 16.72 +- 0.31 / min

Bkg Rate = 7.481 +- 0.076 / min

Preliminary

N_events N_events N_events

Hadronness < 0.4 Hadronness < 0.6



Energy reconstruction

• Splitting rule not relying on class population


• To purify the node population wrt the energy 
distribution the variance is used


• In analogy to the Gini index, the weighted average of 
the variance in minimized to find the best cut:

σ2(E) =
1

NL + NR
(NLσ2

L + NRσ2
R)

• The energy at the node is given by the average of the population at the node


• The final energy is given by averaging the results in each tree:

Credits: K. Ishio

E =
1
n

n

∑
i=0

Ei

25



Energy reconstruction

Main parameters related 
to energy are:


• Size

• number of 

Cherenkov photons

•  Energy


• Impact

• distance of the 

telescope axis to the 
shower 


 smaller size

∝

⇒

Correcting for distance improves size-energy correlation

Credits: K. Ishio26



Energy reconstruction

Main parameters related 
to energy are:


• Size

• number of 

Cherenkov photons

•  Energy


• Impact

• distance of the 

telescope axis to the 
shower 


 smaller size

∝

⇒

Reconstructed energy

Albert et al. (2008)

True energy of the shower 
known from MCs
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Direction reconstruction

Credits: A. Fernández Barral

• Based on DISP parameter


• Source position assumed to be on the ellipse 
major axis


• Source position related to image shape and 
photons arrival time

• Old DISP method: image shape only

• New DISP-RF: also timing information


• Two possible positions are found for each image


• Degeneracy is broken thanks to asymmetry in 
charge distribution  “head-tail discrimination”→

28
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Reconstruction of DISP and ASYMMETRY parameters
28



Credits: A. Fernández Barral

Direction reconstruction

• For stereo observations:


• All possible position combinations are 
considered


• The combination giving the smaller distance 
is selected


• Final source position is estimated as 
average of computed positions weighted 
with number of pixels in images

29



Credits: A. Fernández Barral

Direction reconstruction

• For stereo observations:


• All possible position combinations are 
considered


• The combination giving the smaller distance 
is selected


• Final source position is estimated as 
average of computed positions weighted 
with number of pixels in images

In both mono/stereo cases: training aims at finding a relation between 
the disp (known for MCs) and a defined set of parameters

29



Model comparison

Hillas-based analysis vs RF DISP vs DISP-RF

Albert et al. (2008) Aleksić et al. (2010)
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Standard data analysis chain

Credits: P. Grespan
classification regression
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Standard data analysis chain
Loss of 

information

Credits: P. Grespan
classification regression
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Towards a Deep Learning approach
Loss of 

information

Credits: P. Grespan
classification regression
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Towards a Deep Learning approach
Loss of 

information

Credits: P. Grespan

Optimized for 
image recognition 

classification regression
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Towards a Deep Learning approach
Loss of 

information

Credits: P. Grespan

Aim: 

improve 

reconstruction 

& 


increased instrument 
sensitivity

Optimized for 
image recognition 

classification regression
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Convolutional Neural Networks

• Able to access spatial and temporal image information


• Able to identify relevant image features with unprecedented accuracy through the use 
of convolutions


• Thanks to the extracted features, it can make a prediction of the quantity of interest 


• Performance checked by a loss function

Credits: P. Grespan
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Convolutional Neural Networks

In IACTs event reconstruction…


• Application of CNN on the non-parametrised images to enhance telescope sensitivity


Risks and issues…


• Need for MC hadrons: less reliable than MC γ in approximating real data


• Developed for squared pixels

Credits: P. Grespan
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Solving the hexagonal pixel challenge
• IACT camera pixels are hexagonal


• Need for:

• Mapping method turning them into cartesian 

lattice

• Dedicated convolution implemented in the CNN 

to operate on hexagonal pixel organization

Preserves image charge


Preserves angles and 
distances

Nieto et al. (2019)
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Single telescope full event reconstruction

• One of main efforts: CTLearn framework

• Open source python package for IACT event 

reconstruction with Deep Learning

• Pixel mapping into cartesian lattices

• Model based on a 33-layers CNN with residual 

connections

• One model of each reconstruction task

• Both mono and stereo analyses allowed

Nieto et al. (2021)
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Stereo full event reconstruction

• Output of single-telescope 
network as input for stereo 
network processing multiple 
images in parallel


• Stereo network size 
adjusted based on number 
of telescopes triggered by 
the event

Miener et al. (2021)37

https://arxiv.org/abs/2109.05809


Another approach

classification regression

Loss of 
information

Credits: P. Grespan38



Another approach

classification regression

Loss of 
information

Credits: P. Grespan38



Another approach

classification regression

Loss of 
information

Credits: P. Grespan38



Results

T. Miener (2024)
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Summary and future prospects

•VHE γ-ray astrophysics has a crucial role in exploring the most energetic 
phenomena in the universe


•Classical machine learning techniques as Random Forests represent a robust and 
reliable method for the analysis of VHE γ-ray data


•However, the pre-processing of the γ-ray images needed for the application of this 
techniques can lead to a loss of information on the original event


• In this context Deep Learning methods can be of help, as they are able to work 
directly on the raw images


•Stereo analysis with CNNs on both images and waveforms show promising results
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Thank you for your attention
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