

- Very High Energy astrophysics &
- Imaging Atmospheric Cherenkov
 Telescopes

VHE y-ray astrophysics

- At the most energetic extreme of the EM spectrum
- Y-rays due to non-thermal emission of accelerated particles
- Study of galactic and extragalactic cosmic accelerators

Credits: K. Kosack

VHE y-ray astrophysics

- Effective and high-performing analysis of γ-ray data needed for different science cases:
 - Distant sources
 - Specific AGN types
 - e.g. Flat Spectrum Radio Quasars, Extreme blazars
 - Fundamental physics research
 - e.g. Dark matter, axion like particles, intergalactic magnetic fields

• VHE observations exploit creation of extensive air showers initiated by the incoming gamma-ray

Extensive Air Showers

Hadronic showers

Extensive Air Showers

Hadronic showers

Imaging atmospheric Cherenkov technique

- Air showers initiated by VHE γ-rays
- Detection of Cherenkov light produced by secondary particles
- Image recorded by PMT camera
- Use of atmosphere as a calorimeter
 - Energy of primary particle deposited in the form of cascades of secondary particles
- More telescopes improve the reconstruction

Current generation of IACTs

Current generation of IACTs

Next generation of IACTs: CTAO

IACT event reconstruction

Aims and issues

Aims of event reconstruction:

- Particle type
- Energy
- Incoming direction

Main issue:

Large background from charged cosmic-rays (hadronic showers)

Ratio: 1:1000

Image cleaning and parametrization

- Images are cleaned to remove pixels without significant signal or related to spurious signals fro electronics and identify the shower
- Cleaned images are parametrized as elliptical shapes with so-called Hillas parameters

Image cleaning and parametrization

\boldsymbol{C}	• 7	7	1	1
OUTCO	110/0	nonda	nt nai	rameters
$\lambda \mathcal{O}(M) \cup \mathcal{C}$	-IIIIIII	HEMAE		amelers
			rice per	
		•		

Size	Total number of phe in the image
Width	Length of the semi-minor axis of the ellipse
Length	Length of the semi-major axis of the ellipse
Center of Gravity (CoG)	Coordinates of the weighted average signal in the camera plane

Source-dependent parameters

Dist	Distance between expected source position and CoG position
Alpha	Angle between ellipse major axis and expected source position - CoG line

Timing parameters

TimeRMS	Arrival times RMS of pixels surviving image cleaning
Time gradient	Slope of linear function used to fit the arrival time distribution of the pixels

Directional parameters

Asymmetry	Sign of the difference between position of brightest pixel and CoG

Image quality parameters

LeakageN	Fraction of image size contained in N outermost pixel rings of the camera
Number of islands	Number of non-connected pixel groups surviving image cleaning

Related to the primary particle energy

Related to the lateral and longitudinal development of the shower

Differentiates between shower head-tail

Estimates the fraction of signal loss

Larger for hadronic showers (usually are more fragmentated)

Image cleaning and parametrization

Stereo parameters

Shower axis	Direction of the shower
Impact parameter	Distance between the shower axis and the pointing direction of the telescope
Impact point	Impact position of the shower on the ground
Height of shower max	Height at which the number of particles in the EAS is maximum. It depends on the energy of the primary particle.

Analysis technique before machine learning

Different techniques, mostly based on Hillas parametrization or on semi-analytical models

Hillas-parameter based analysis

- Relies on MC simulations
- Defines static cuts to discriminate between y and hadrons
- Values of image parameters are compared with expectation values from MCs

width and length as good separation parameters, at least for size > 200 phe (i.e. E > 100 GeV)

Current analysis method: Random Forest

- Based on Random Forests (RF), one for each task
 - Collection of uncorrelated decision trees, combining their individual results to make the prediction
- Event characterized by vector of image parameters
- Training on MC γ and real background
- MC and bkg data have to match as much as possible the observational conditions of the source data
 - e.g. zenith angle, dark/moon nights, extragalactic/galactic obs.

Current analysis method: Random Forest

How does the splitting work?

- Full sample (i.e. full parameter space) in root node
- Splitting of each node using on parameter at a time and an optimized cut value
- Splitting process stops if
 - Events per node below defined limit
 - Only events of one class in the node

Identification of particle type

- Best cut value obtained through minimization of the Gini index
 - Measure of the inequality in two distributions as a function of a cut in a variable

$$Gini = \frac{4N_{\gamma} N_h}{(N_{\gamma} + N_h)^2}$$

After split: weighed average of
Gini in each node
Nodes at same depth

The smaller the Gini, the better the separation

Identification of particle type

• At each terminal node a hadronness value is assigned based on its population (gammas=0, hadrons=1)

$$h_i = \frac{N_{\gamma} \cdot 0 + N_h \cdot 1}{N_{\gamma} + N_h} \Rightarrow hadronness = \frac{1}{n} \sum_{i=0}^{n} h_i$$

Identification of particle type

 At each terminal node a hadronness value is assigned based on its population (gammas=0, hadrons=1)

$$h_{i} = \frac{N_{\gamma} \cdot 0 + N_{h} \cdot 1}{N_{\gamma} + N_{h}} \Rightarrow hadronness = \frac{1}{n} \sum_{i=0}^{n} h_{i}$$

Colin et al., ICRC (2009)

Effect of gamma/hadron cut

Hadronness < 0.2

Hadronness < 0.4

Hadronness < 0.6

Energy reconstruction

- Splitting rule not relying on class population
- To purify the node population wrt the energy distribution the variance is used
- In analogy to the Gini index, the weighted average of the variance in minimized to find the best cut:

$$\sigma^{2}(E) = \frac{1}{N_{L} + N_{R}} (N_{L}\sigma_{L}^{2} + N_{R}\sigma_{R}^{2})$$

- The energy at the node is given by the average of the population at the node
- The final energy is given by averaging the results in each tree: $E = \frac{1}{n} \sum_{i=0}^{n} E_i$

Energy reconstruction

Main parameters related to energy are:

- Size
 - number of Cherenkov photons
- Impact
 - distance of the telescope axis to the shower
 - ⇒ smaller size

Energy reconstruction

Main parameters related to energy are:

- Size
 - number of Cherenkov photons
- Impact
 - distance of the telescope axis to the shower
 - ⇒ smaller size

True energy of the shower known from MCs

- Based on DISP parameter
- Source position assumed to be on the ellipse major axis
- Source position related to image shape and photons arrival time
 - Old DISP method: image shape only
 - New DISP-RF: also timing information
- Two possible positions are found for each image
- Degeneracy is broken thanks to asymmetry in charge distribution → "head-tail discrimination"

Credits: A. Fernández Barral

- Based on DISP parameter
- Source position assumed to be on the ellipse major axis
- Source position related to image shape and photons arrival time
 - Old DISP method: image shape only
 - New DISP-RF: also timing information
- Two possible positions are found for each image
- Degeneracy is broken thanks to asymmetry in charge distribution → "head-tail discrimination"

Credits: A. Fernández Barral

- For stereo observations:
 - All possible position combinations are considered
 - The combination giving the smaller distance is selected
 - Final source position is estimated as average of computed positions weighted with number of pixels in images

Credits: A. Fernández Barral

- For stereo observations:
 - All possible position combinations are considered
 - The combination giving the smaller distance is selected
 - Final source position is estimated as average of computed positions weighted with number of pixels in images

Credits: A. Fernández Barral

In both mono/stereo cases: training aims at finding a relation between the disp (known for MCs) and a defined set of parameters

Model comparison

Hillas-based analysis vs RF

DISP vs DISP-RF

Standard data analysis chain

Standard data analysis chain

Towards a Deep Learning approach

Towards a Deep Learning approach

Towards a Deep Learning approach

Convolutional Neural Networks

- Able to access spatial and temporal image information
- Able to identify relevant image features with unprecedented accuracy through the use of convolutions
- Thanks to the extracted features, it can make a prediction of the quantity of interest
- Performance checked by a loss function

Convolutional Neural Networks

In IACTs event reconstruction...

Application of CNN on the non-parametrised images to enhance telescope sensitivity

Risks and issues...

- Need for MC hadrons: less reliable than MC y in approximating real data
- Developed for squared pixels

Solving the hexagonal pixel challenge

- IACT camera pixels are hexagonal
- Need for:
 - Mapping method turning them into cartesian lattice
 - Dedicated convolution implemented in the CNN to operate on hexagonal pixel organization

Nieto et al. (2019)

- Preserves image charge
- Preserves angles and distances

Single telescope full event reconstruction

- One of main efforts: CTLearn framework
 - Open source python package for IACT event reconstruction with Deep Learning
 - Pixel mapping into cartesian lattices
 - Model based on a 33-layers CNN with residual connections
 - One model of each reconstruction task
 - Both mono and stereo analyses allowed

Stereo full event reconstruction

- Output of single-telescope network as input for stereo network processing multiple images in parallel
- Stereo network size adjusted based on number of telescopes triggered by the event

Another approach

Credits: P. Grespan

Another approach

Credits: P. Grespan

Another approach

Credits: P. Grespan

Results

Summary and future prospects

- VHE γ-ray astrophysics has a crucial role in exploring the most energetic phenomena in the universe
- ullet Classical machine learning techniques as Random Forests represent a robust and reliable method for the analysis of VHE γ -ray data
- However, the pre-processing of the γ-ray images needed for the application of this techniques can lead to a loss of information on the original event
- In this context Deep Learning methods can be of help, as they are able to work directly on the raw images
- Stereo analysis with CNNs on both images and waveforms show promising results

Thank you for your attention