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Combinatorial Optimisation Problems

• The field of Combinatorial Optimisation (CO) is one of the most important areas in the
field of optimisation, with a wide variety of real-world applications

• Optimisation problems are concerned with making decisions in settings where a large
number of yes/no must be made

• Each set of decisions yields a corresponding objective function value (e.g. a cost or profit
value) that needs to be minimised or maximised

• This kind of problems are NP-complete

• Typical optimisation problems are:
• Resource allocation problems (e.g. flight-gate assignment)
• Distance minimisation (e.g. traveller salesman problem)
• Profit maximisation (e.g. credit scoring)
• ...
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The Quadratic Unconstrained Binary Optimisation Problem

In recent years, we have discovered that a mathematical formulation known as the
Quadratic Unconstrained Binary Optimisation problem (QUBO), can cover an extraordinary
variety of important CO problems

QUBO formulation

minimise/maximise C(x) = xtQx (1)

where:
• x is a vector of binary decision variables
• Q is a square matrix of constants that describes the constraints of the specific problem
• C is called cost function because it expresses the cost of each solution
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The Ising Model

To solve the minimization problem in an efficient way, we use a model coming from the
physics world: the Ising model.

The Ising Hamiltonian

H = −
∑
⟨ij⟩

Jijσiσj − µ
∑

j

hjσj

describes a N particle system where
• Jij and hj are coupling constants related to the interactions

between nearest neighbors and to the effect of an external
field, respectively

• σk is the Pauli (usually Z) operator measuring the k-th spin
with possible outcomes {−1,+1}
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From Ising to quantum systems

The cost function C(x) can be easily translated into an Ising Hamiltonian H for a N-qbit
system. Our problem could be written as:

min
ψ

⟨ψ|H |ψ⟩

Such formulation describes a quantum system:
• The Hamiltonian H is an operator that measures the energy of the system
• ψ is a generic state of the system

The minimization problem becomes the search for the ground state, or finding the state ψ
that minimizes the energy of the system.
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Why QUBO with VQE?

• QUBO problems are NP-complete, exact solvers will fail to stop in reasonable time,
the best solution is brute force

• Metaheuristic methods find a high quality solution, not necessarily optimal, in a limited
amount of time

• With the Ising Hamiltonian, the solution of the QUBO formulation can be computed in
polynomial time using two possible quantum approaches:

• Quantum annealing
• Hybrid approach: QAOA or VQE
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The Variational Quantum Eigensolver (VQE)

• The Variational Quantum Eigensolver (VQE) is an iterative hybrid classical-quantum
algorithm that is used to find the ground state of a system

• The QPU evolves an input state |ψi⟩ to give an output state |ψi+1⟩ using a quantum circuit
defined by:

• A structure, or ansatz, U(θi) which describes the order set of quantum gates
• A set of parameters θi that dictates the behavior of these quantum gates

• The CPU computes the expectation value ⟨ψi |H |ψi⟩ and the classical optimizer (e.g.
SPSA) selects the new set of rotation angles θi+1 for the next iteration
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Steps of VQE

While the energy estimate is not satisfactory, the iterative scheme is:
1 The state |ψi⟩ (|ψ0⟩ = |0⟩) and the set of angles θi (randomly initialized) are fed to the
QPU which computes the output state |ψi+1⟩ = U(θi) |ψi⟩

2 The CPU computes the expectation value ⟨ψi+1|H |ψi+1⟩ or the energy of the system
when it is in the state ψi+1

3 On the CPU the classical optimizer (e.g. SPSA) selects the new set of rotation angles
θi+1 for the next iteration, which starts in the state |ψi+1⟩, with the goal to minimize
the energy of the system

ψ1 = U(θ0) |0⟩ ψ2 = U(θ1) |ψ1⟩ . . . ψi+1 = U(θi) |ψi⟩
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The complexity of the VQE algorithm

• Step 1: constant - The bound is the number of shots S needed to get an accurate
measurement of the expectation value, O(103) is a good approximation.

• Step 2: polynomial - Computing the expectation value of a state requires applying the
Pauli operator σZ O(N2) times.

• Step 3: linear - Classical optimizers find a minimum in O(N).

Conclusion
With the VQE we have found a polynomial scaling, that is better than the one expected for
the best known classical algorithm.

Disclaimer: this is true asymptotically, with small graphs and on simulators the classical
algorithm still performs better. With larger graphs and quantum hardware we can see the
performance improvement.
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