PMT Reco & Analysis - Previously

Figure 1.18: Full example of the analysis pipeline for the alpha particles identified in a given picture (run 41525, picture 399): (a) Original picture and sCMOS analysis of both alphas; (b) Light transverse profile of the alpha tracks; (c) and (d) the set of 4 waveforms for each trigger identified as alpha tracks; (e) waveform - cluster association and final 3D projection in the real LIME framework.

Previous episodes:

1. [https://agenda.infn.it/event/41735/]

Initial look at alpha tracks for directional & head-tail determination

2. [https://agenda.infn.it/event/42030/]

<u>1 Update on ... - 3D reconstructed alpha tracks</u>

- 3. [https://agenda.infn.it/event/42653/]
 - <u>2 Update on ... 3D reconstructed alpha tracks</u>

Full framework retrieves and saves all the relevant information automatically, including plots .

These are *not* cherry-picked events

#3 Update on ... 3D alphas - Optimization of parameters

David Marques and PMT Working Group Technical / Analysis meeting 18-07-2024

<u>Fixing camera</u> <u>coordinates & rotations</u>

... There's still work to be done:

Some incoherence in the 3D projection and CMOS data...

... Maybe there are some coordinate / granularity / centering corrections to do...

Let's analyze the lengths of the tracks

Using **sc_length**

Track start = With Analyzer::Edges (first())* granularity

Track end =

- (sc_length[sc_i] * granularity * cos(cam.angle_XY * TMath::Pi()/180.));
- (sc_length[sc_i] * granularity * sin(cam.angle_XY * TMath::Pi()/180.));

Let's analyze the lengths of the tracks

Using **sc_length**

Track start = With Analyzer::Edges (first())* granularity

Track end =

- (sc_length[sc_i] * granularity * cos(cam.angle_XY * TMath::Pi()/180.));
- (sc_length[sc_i] * granularity * sin(cam.angle_XY * TMath::Pi()/180.));

Using **edges** (from cmos:analyzer class)

Track start = With Analyzer::Edges (first())* granularity
Track end = With Analyzer::Edges (back())* granularity

Let's analyze the lengths of the tracks

Using **sc_length**

Track start = With *Analyzer::Edges* (first())* granularity

Track end =

- (sc_length[sc_i] * granularity * cos(cam.angle_XY * TMath::Pi()/180.));
- (sc_length[sc_i] * granularity * sin(cam.angle_XY * TMath::Pi()/180.));

Using **edges** (from cmos:analyzer class)

Track start = With Analyzer::Edges (first())* granularity
Track end = With Analyzer::Edges (back())* granularity

→ It's because of the shadows 🗲

• These get merged into the main cluster, making some of the variables wrong...

Track and shadow merged in the final code ⇒ **Be careful**

with reco variables for alphas!

The alpha selection

The alpha selection with occupancy>0.7

- These are the first 10 selected events

D. Pinci saw the same issue

→ It's because of the shadows 🔚

- These get merged into the main cluster, making some of the variables wrong...
- With the <u>CMOS::analyzer</u> this doesn't happen because the "<u>removeNoise</u>" function removes all of this
 - (NB: If the cluster gets mixed with an alpha with a cosmic, still doesn't work. (CMOS reco could be improved))

→ It's because of the shadows

- These get merged into the main cluster, making some of the variables wrong...
- With the **<u>CMOS::analyzer</u>** this **doesn't happen** because the "<u>removeNoise</u>" function **removes all of this**
 - (NB: If the cluster gets mixed with an alpha with a cosmic, still doesn't work. (CMOS reco could be improved))

→ Track ends up outside the frame?! Length very big ?!

→ It's because of the shadows

- These get merged into the main cluster, making some of the variables wrong...
- With the **CMOS::analyzer** this **doesn't happen** because the "<u>removeNoise</u>" function **removes all of this**
 - (NB: If the cluster gets mixed with an alpha with a cosmic, still doesn't work. (CMOS reco could be improved))

→ Track ends up outside the frame?! Length very big ?!

→ Also greatly impacts Angle Z and total length!

Some more examples to confirm it's working...

Some more examples to confirm it's working...

- I would say the variables matching are on point! \Rightarrow Solved \checkmark
- Additionally, if you look at the coordinates, it's not 33x33.
 - This also proves how much the **camera sampling** \Rightarrow 36x36 cm².

TH3F *axis = new TH3F(name, name,

1, <u>0, 36</u>, 1, 0, 50, 1, <u>0, 36</u>);

#4 Update on ...

<u>Statistical results +</u>

comparison with D. Pinci

David Marques

Technical / Analysis meeting 18-07-2024

Statistical Analysis

PMT 3D reco – Conclusions

→ But first...

To improve the **cluster-trigger association**

(1-to-1 association), we use the **BAT-fit to**

position the PMT signal in the GEM plane:

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.

$$V = R * I \Rightarrow V = R * Q/\Delta t \Rightarrow Q = \frac{V * t}{R}$$
 (1.4)

$$Q[nC] = A[ADU] * \frac{DGTZ \text{ dynamic range}[V]}{DGTZ \text{ resolution}[bits]} * \Delta t / R$$
$$= A[ADU] * \frac{1[V]}{12[bits]} * \frac{1}{DGTZ \text{ sampl. freq.}}[ns] / R[Omega] \qquad (1.5)$$
$$= A * \frac{1}{4096} * \frac{4}{3} * \frac{1}{50}$$

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.
- 4. Same for CMOS (using Analyzer::Edges)
- 5. Distance between points calculated
- 6. Cluster-trigger association done by smaller distances

To improve the <u>cluster-trigger association</u> (<u>1-to-1 association</u>), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.
- 4. Same for CMOS (using Analyzer::Edges)
- 5. Distance between points calculated
- 6. Cluster-trigger association done by smaller distances

⇒ Works surprisingly well!

We can study the efficiency of this fit: 350 <u>ि</u> 2000 Y distance [pixe 300 250 200 150 -500 100 -1000 -1500 a hara hara hara hara hara hara -2000 2000-1500-1000 -500 0 500 1000 1500 2000 Counts [#] X distances X Distances Entries 264000 -53.04 Mean Y Distances Std Dev 147.1 10000 Y distances 264000 Entries Mean -0.4876 8000 Std Dev 149 6000 4000 2000 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 Distance [pixels]

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>

We can study the efficiency of this fit:

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>
- At the moment, is only necessary for matching *alpha* tracks.
 - Rarely 2 in one pic.
 - This resolution is more than enough.
 - At closer distances, also the <u>CMOS reco</u> starts *failing and* merging the tracks, which renders useless the 3D reco.

We can study the efficiency of this fit:

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>
- At the moment, is only necessary for matching *alpha* tracks.
 - Rarely 2 in one pic.
 - This resolution is more than enough.
 - At closer distances, also the <u>CMOS reco</u> starts *failing and* merging the tracks, which renders useless the 3D reco.

I have many examples, there's a bit of everything...

David M.

I have many examples, there's a bit of everything...

There are clear reasons to not have a perfect fit:

- 1. When the <u>waveforms are saturated</u> due to high gain, we lose proportionality \Rightarrow BAT-fit works better in the middle region.
- 2. Offsets due to improve this, but I haven't checked.
- 3. <u>Barreling effect</u> from lens towards the sides farther difficulties the fit ⇒ Giorgio working on it

While this is interesting, the optimization; test of other types of particles; implementation at front-end level is out-of-scope for my work.

GS

Statistical Results

- → Now we can actually do some statistical analysis on the results
 - Eventually compare with MC truth from Flaminia's simulations

The datasets used were:

- 1. Run 3
 - For optimization only
- 2. <u>Run 4</u>
 - Most of the long ranges of
 Bkg + calibs
- 3. Run 5
 - Different gain:
 - Interesting by will
 - *maybe* require
 - parameter tuning... in
 - the pipeline.

The datasets used were:

- 1. Run 3
 - For optimization only
- 2. <u>Run 4</u>
 - Most of the long ranges of
 Bkg + calibs
- 3. Run 5
 - Different gain:
 - Interesting by will maybe require parameter tuning... in the pipeline.

TATUS	present in SSD?	Start	Stop	Numbers		Description	Data runs	Data pics Gas FI	ow Filter Line 1	Filter Line2	2 !
		2023-12-01 15:08	2023-12-04 9:39	40784 -	40917	Stability	133	53200	5 Blu	Not in use	1
ONE	YES	2023-12-04 10:23	2023-12-14 16:40	40919 -	42848	Bkg + Daily Calibrations	1929	771600	5 Blu	Not in use	Th
		2023-12-14 18:07:07	2023-12-16 10:17:27	42863 -	43185	Bkg + Daily Calibrations Low GAIN	322	128800	5 Blu	Not in use	the
		2023-12-15 11:54:46	2023-12-15 14:44:20	42985	43050	VGEM1 scan	65	26000	5¦Blu	Not in use	1
		2023-12-16 23:50:59	2023-12-17 21:53:14	43186 -	43231	Stability + Daily Calibrations- LOW Gas Flow : 2 I/h	45	18000	2 Blu	Not in use	1
		2023-12-17 22:45:16	2023-12-22 16:18:47	43232 -	43308	Stability + Daily Calibrations- LOW Gas Flow : 1 I/h	76	30400	1'Blu	Not in use	1
		2023-12-17 22:45:16	2023-12-22 16:18:47	43316 -	43486	Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	170	68000	1 Blu + Rosso	Not in use	1
		2023-12-31	1	43502 -	43508	Daily Calibration			1 Blu + Rosso	Not in use	1
				43509 -	43515	Daily Calibration			1 Blu + Rosso	Not in use	1
		2024-01-04	1	43517 -	43522	Daily Calibration			1 Blu + Rosso	Not in use	-
		2024-01-06	5	43524 -	43529	Daily Calibration			1 Blu + Rosso	Not in use	1
		2024-01-08	3	43531 -	43536	Daily Calibration			2 Blu + Rosso	Not in use	1
		2024-01-10)	43636 -	43641	Daily Calibration			2 Blu + Rosso	Not in use	1
		2024-01-12	2	43732 -	43738	Daily Calibration			5 Blu + Rosso	Not in use	FIC
		2024-01-14	4	43849 -	43855	Daily Calibration			5 Blu + Rosso	Not in use	1
		2024-01-10	5	44047 -	44053	Daily Calibration			5 Blu + Rosso	Not in use	-
		2024-01-1	7	44203 -	44209	Daily Calibration			5 Blu + Rosso	Not in use	1
		2024-01-18	3	44367 -	44372	Daily Calibration			5 Blu + Rosso	Not in use	1
		2024-01-19	9	44553 -	44559	Daily Calibration			5 Blu + Rosso	Not in use	1
		2024-01-08 12:00:15	2024-01-08 18:38:15	43537 -	43701	Stability + Daily Calibrations- LOW Gas Flow : 2 I/h	164	65600	2,Blu + Rosso	Not in use	1
		2024-01-08 18:38:15	2024-01-15 9:00:00	43702 -	43885	Stability + Daily Calibrations- Gas Flow : 5 l/h	183	73200	5 Blu + Rosso	Not in use	1
0		2024-01-15 9:11:14	2024-01-23 12:31	43886 -	45213	Bkg + Daily Calibrations	1327	530800	5 Blu + Rosso	Not in use	1
		2024-01-23 15:44:30	2024-01-24 9:53:11	45214 -	45251	Stability + Daily Calibrations- Gas Flow : 5 I/h	37	14800	5 Blu + Rosso	Not in use	i.
ONE	YES	2024-01-24 10:27:00	2024-02-02 9:42	45259 -	46628	Bkg + Daily Calibrations	1369	547600	5 Blu + Rosso	Not in use	
		2024-02-02 9:47:28	2024-02-04 11:21:19	46636 -	46740	Stability + Daily Calibrations- Gas Flow : 4 I/h	104	41600	5 Blu + Rosso	Not in use	1
		2024-02-04 11:21:19	2024-02-05 14:03:49	46741 -	46802	Stability + Daily Calibrations- Gas Flow : 5 I/h	61	24400	5 Blu + Rosso	Not in use	1
		2024-02-05 14:13:49	2024-02-06 23:50	46803 -	47023	Bkg + Daily Calibrations	220	88000	5 Blu + Rosso	Not in use	1
		2024-02-06 23:59:42	2024-02-07 10:03:47	47024 -	47051	Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	27	10800	1 Blu + Rosso	Not in use	1
		2024-02-07 10:03:47	1	47052 -	47108	Stability + Daily Calibrations- LOW Gas Flow : 0 I/h	56	22400	1 Blu + Rosso	Not in use	1
				47982 -	47985	DT test: trigger rate 36 Hz, PMT 590 V	4	1600	1 Blu + Rosso	Not in use	1
				47986 -	47989	DT test: trigger rate 26 Hz, PMT 580 V	4	1600	1 Blu + Rosso	Not in use	1
				47990 -	48014	DT test: trigger rate 4 Hz, PMT 560 V	25	10000	1 Blu + Rosso	Not in use	1
				48015 -	48054	DT test: trigger rate 2 Hz, PMT 555 V	40	16000	1 Blu + Rosso	Not in use	1
		2024-02-10 14:55:57	2024-02-15 13:07:13	47209 -	47981	Bkg + Daily Calibrations	772	308800	5 Blu + Rosso	Not in use	-
or sentine	el	2024-02-15 15:35:22	2024-03-05 9:33	48055 -	50891	Bkg + Daily Calibrations	2836	1134400	5 Blu + Rosso	Not in use	
		2024-03-17 16:20:14	2024-03-18 15:14	52664 -	52808	Bkg + Daily Calibrations	144	57600	5 Blu + Rosso	Not in use	
		2024-03-18 15:42:55	2024-03-19 15:19:04	52816 -	52874	Stability + Daily Calibrations- LOW Gas Flow : 1 I/h	58	23200	1 Blu + Rosso	Not in use	1
		2024-03-19 16:46:18	1	52882 -		Stability + Daily Calibrations- Gas Flow : 5 l/h	121	48400	5 Blu + Rosso	Not in use	Air
					53003	Stability + Daily Calibrations- Gas Flow : 5 I/h			5 Blu + Rosso	Not in use	Air
		2024-03-21 17:51:00		53004 -	53109	Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	105	42000	1,Blu + Rosso	Not in use	Air
ONE	YES	2024-03-23 18:20:34	2024-03-26 9:41:19	53110 -	53502	Bkg + Daily Calibrations	392	156800 5+20	Blu + Rosso	Not in use	Air
ONE	YES	2024-03-29 10:01:40	2024-04-02 10:02:22	53707 -	54403	Bkg + Daily Calibrations	696	278400 5+20	Blu + Rosso + RADON	Not in use	Air
		2024-04-02 10:42:22	1	54411 -	54502	Stability + Daily Calibrations- HIGH recirculation 40 l/h	91	36400 5+40	Blu + Rosso + RADON	Not in use	Air
ONE	YES	2024-04-04 8:31:50	2024-04-08 8:26:06	54503 -	55093	Bkg + Daily Calibrations	590	236000 5+40	Blu + Rosso + RADON	Not in use	Air
0		2024-04-08 13:00:06	5	55101 -	56883	Bkg + Daily Calibrations - Low Gain - Low Drift	1782	712800 5+40	Blu + Rosso + RADON	Not in use	Air
									1		1

1. Alpha frequency in each batch

Batch	Runs	N runs	N matched alphas	N alphas per run	
1	40919-42848	1820	52800	29.01	
2	45259-46628	1370	8529	6.23	
3	53110-53502	390	2315	5.94	
4	54503-55093	591	3050	5.16	
5	53707-54403	531			
(6)	48055-50891	-	-	-	

High number of alphas in December, before oxygen and humidity filters were installed (correct?)

1. Alpha frequency in each batch

Batch	Runs	N runs	N matched alphas	N alphas per run	
1	40919-42848	1820	52800	29.01	
2	45259-46628	1370	8529	6.23	
3	53110-53502	390	2315	5.94	
4	54503-55093	591	3050	5.16	
5	53707-54403	531			
(6)	48055-50891	-	-	-	

High number of alphas in December, before oxygen and humidity filters were installed (correct?)

For all analysis, I don't have many cuts as I only saved <u>matched and alpha-PID</u> signals. \Rightarrow You

can assume near-perfect selection.

Given the statistics, I'll group the data as *before (batch 1) and after Christmas (batch 2-5)*.

2. 3D lengths distributions

2. **3D lengths distributions**

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:
 - 3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers. Iaminia has slightly bighes values for these alphas

Flaminia has slightly higher values for these alphas.

2. 3D lengths distributions

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers. Jaminia has slightly bigher values for these globas

2. 3D lengths distributions

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers. Flaminia has slightly higher values for these alphas.

C/GNO G S Experiment S I

2. **3D lengths distributions**

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers.

2. **3D lengths distributions**

... Comparing batches:

- before (1) vs after (2-5) Rn filters
- Normalized to 1
- Statistics: 40k vs 10k samples

2. **3D lengths distributions**

... Comparing batches:

- before (1) vs after (2-5) Rn filters
- Normalized to 1
- Statistics: 40k vs 10k samples
- → The **Rn peaks** are in the same positions
 - 🕨 🛛 Good consistency 🔽
- → The relative quantity of Rn alphas in batch 2-5 reduced, highlighting other peaks.
 - Another proof of presence of Rn and posterior effectiveness of filters

David M.

2. **3D lengths distributions**

... Caveats:

 \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.

2. **3D lengths distributions**

... Caveats:

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>"minimum temporal signal"</u> from the measured ToTs.

3D lengths distributions

... Caveats:

2.

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>"minimum temporal signal"</u> from the measured ToTs.
 - If I were to remove the ⁵⁵Fe length (= 63 samples = 4.6mm)...

2. 3D lengths distributions

* NB: This correction was also applied in the tilted cosmic (flux)

studies (https://agenda.infn.it/event/38654/contributions/217319/)

... Caveats:

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>**"minimum temporal signal"**</u> from the measured ToTs.
 - If I were to remove the ⁵⁵Fe length (= 63 samples = 4.6mm)...
 - The results would be even closer.

- 222Rn -> 5.590 MeV (about 43 mm)
- 218Po -> 6.115 MeV (about 50 mm)
- 214Po -> 7.833 MeV (about 73 mm)

^{- 3} alphas:

Experiment S I

2. 3D lengths distributions - conclusion

... Conclusions:

2. 3D lengths distributions - conclusion

... Conclusions:

• Results are very interesting because, *unlike the energy that saturates* and spoils the spectrum, <u>the length of the</u> <u>tracks can be quite precise</u>, and indeed we can see, also with a **good resolution**!

- → We are <u>clearly in the presence of Rn</u> as we see the 3 contributions.
- → A simulation + digitization would help my analysis, mostly on the accuracy of the CMOS:analyzer class, since it was initially optimized only for ERs.
- → PMT simulation would be even better to test full 3D analysis!

3. dE/dx vs energy and vs length

... a quick look:

C/GNO G S

3. dE/dx vs energy and vs length

... a quick look:

- → Lines likely correspond to the **3 alphas observed**.
 - They are not points because of saturation!

-14

12 full_length 12

• Could saturation be studied from here?

CXGNO G S Experiment S I

4. Angles

4. Angles

→ Reference frame

Figure 1.5: System of coordinates and angles used in the analysis of LIME data.

4. Angles

→ Reference frame

Figure 1.5: System of coordinates and angles used in the analysis of LIME data.

4. Angles

- → Cuts based on the alpha 3D lengths:
 - > 4 cm: Rn alphas

<	4	cm:	Everyt	hing	else
---	---	-----	--------	------	------

		A	ZGNO	G	S
		full_length {full_length >	0 && full_length <	< 12}	
				hte	mp
	E			Entries	50808
	1800	6		Mean	4.583
	F	1		Std Dev	1.379
	1600	1			
1	1400				
	1400E	11			
	1200	11			
	1200				
	1000				
	E				
	800-				
	=	110			
	600	111			
	E				
	400	(V)			
	E	1 1			
	200	and a star and a start and a			
	, E	man	W. Newsman and a		
	0	2 4 6	8 10	12	
				tuli long	th

4. Angles

- → Cuts based on the alpha 3D lengths:
 - > 4 cm: Rn alphas

→ Before Christmas/Rn filters

- → Rn alphas have symmetric distribution of angles.
 - Makes sense since emission is random
- → Non-Rn alphas have preferential direction towards GEM
 - ♦ Perhaps coming from cathode? ⇒

To investigate with absolute Z

... Comparing before and after Rn filters:

 \rightarrow

4. Angles

- Cuts based on the alpha 3D lengths:
 - > 4 cm: Rn alphas

< 4 cm: Everything else</p>

... Comparing before and after Rn filters:

 \rightarrow

4. Angles

- Cuts based on the alpha 3D lengths:
 - > 4 cm: Rn alphas

... Comparing before and after Rn filters:

4. Angles

...We can also look at the <u>distribution of angles</u>

4. Angles

...We can also look at the <u>distribution of angles</u>

full_length:Z_angle {full_length > 4 && full_length < 12 && pmt_direction != 0}

full_length:Z_angle {full_length > 0 && full_length < 4 && pmt_direction != 0}

→ Alphas at 7 cm more towards GEMs. Po charged daughters that drift towards cathode?

4. Angles

..We can also look at XY angle, meaning <u>CMOS-only analysis*</u>

*Xenon nT style

4. Angles

..We can also look at XY angle, meaning <u>CMOS-only analysis*</u>

*Xenon nT style

- → This shows a much greater amount of track going downwards, which could be from the resistors?
 - To be confirmed with position dependent cuts...

G S