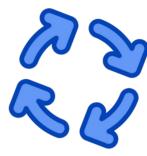


Updates of a new analysis framework on SHOE


Giacomo Ubaldi Roberto Zarrella

XVII FOOT Collaboration Meeting

17/12/2024

- Action based structure
- Every class has methods to be applied *before*, *during* and *after* the event loop.

Event Loop()

Create a container of **selection cuts** for events and global tracks (**reco** level)

- Action based structure
- Every class has methods to be applied *before*, *during* and *after* the event loop.

Create a container of **selection cuts** for events and global tracks (**reco** level)

Create a container of **physical quantities counts** needed for cross section (**reco** level)

- Action based structure
- Every class has methods to be applied *before*, *during* and *after* the event loop.

Create a container of **selection cuts** for events and global tracks (**reco** level)

Create a container of **physical quantities counts** needed for cross section (**reco** level)

Create a container of selection cuts and quantities counts (MC truth level)

- Action based structure
- Every class has methods to be applied *before*, *during* and *after* the event loop.

Create a container of **selection cuts** for events and global tracks (**reco** level)

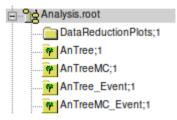
Create a container of **physical quantities counts** needed for cross section (**reco** level)

Create a container of selection cuts and quantities counts (MC truth level)

Fill Flat Trees with the previous containers for every event / global track

- Action based structure
- Every class has methods to be applied *before*, *during* and *after* the event loop.

Create a container of **selection cuts** for events and global tracks (**reco** level)

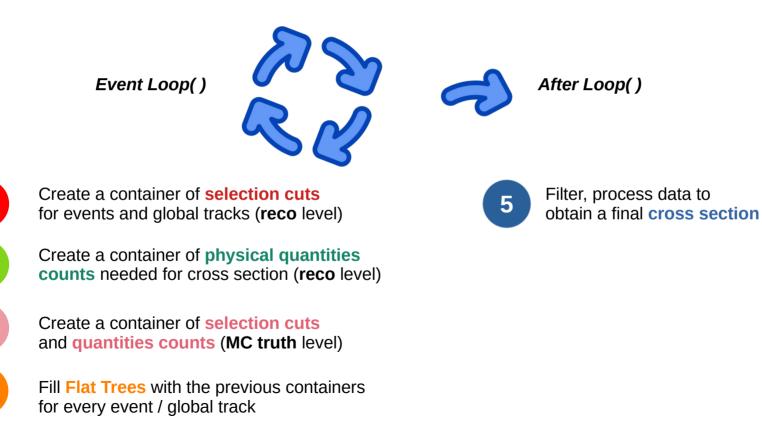

Create a container of **physical quantities counts** needed for cross section (**reco** level)

Create a container of selection cuts and quantities counts (MC truth level)

Fill Flat Trees with the previous containers for every event / global track

- For every event (MC and Reco):
 - event selection cuts
- For every global track (MC and Reco):
 - track selection cuts
 - physical quantities: charge, angle, velocity

• Action based structure


1

2


3

4

• Every class has methods to be applied *before*, *during* and *after* the event loop.

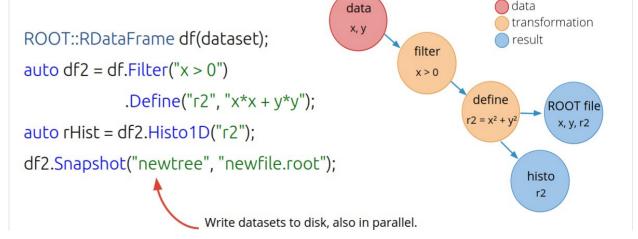
Parameter Configuration

CrossSection after DataReduction

- With **DataReduction** on: trees with *variables* and *cuts*
- With CrossSection on: plots of XS •
- Two different outputs ٠

11		-+	-+-+-	
<pre>// Parameters for</pre>				
// -+-+-+-++- MassReso:	•+-+-+-+-+-+-+-	-+		
hassnesu.	0			
PtReso:	Θ		CrossSection stand alone	
DataReduction:	Θ	•	With CrossSection on: plots of XS	
CrossSection:	1 5		·····	
		•	DataReduction as input; XS plots as output	

RDataFrae


TANAactCrossSection

After Loop():

Root TTree handled by the class **ROOT::RDataFrame**

//----- Load ROOT DataFrame
ROOT::RDataFrame d(*fAnTree);
ROOT::RDataFrame d_MC(*fAnTreeMC);
ROOT::RDataFrame d_Ev(*fAnTree_Event);
ROOT::RDataFrame d_MC_Ev(*fAnTreeMC_Event);

- used to manipulate HEP data
- consistent interfaces in Python and C++
- already implemented and tested methods for **data analysis** (filters, selections...)

Giacomo Ubaldi

TANAactCrossSection

After Loop():

Applying selection cuts ٠

//--- Selection Cuts aEventCutsMap["BMcut"] = 1; aEventCutsMap["VTXposCut"] = 1; aTrackCutsMap["HasTwPoint"] = 1; aTrackCutsMap["TrackQuality"] = 1; // inside Chi2 values aTrackCutsMap["VTXposCut"] = 1;

// only 1 track in BM // no VTX points pileup // track has TW point // VTX point inside TG geometry // VT track matches with BM track

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}\;N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

TANAactCrossSection

After Loop():

Applying selection cuts ٠

```
//--- Selection Cuts
aEventCutsMap["BMcut"] = 1;
aEventCutsMap["VTXposCut"] = 1; // no VTX points pileup
aTrackCutsMap["HasTwPoint"] = 1; // track has TW point
aTrackCutsMap["TrackQuality"] = 1; // inside Chi2 values
aTrackCutsMap["VTXposCut"] = 1;
```

- // only 1 track in BM // VTX point inside TG geometry // VT track matches with BM track
- Calculate the **yields** (filtering the previous selection cuts) ٠

```
//--- Yield
aVariablesList.push back("Charge");
aVariablesList.push back("Theta");
FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "1 Reco Charge");
```

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}\;N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

TANAactCrossSection

After Loop():

Applying selection cuts

```
//--- Selection Cuts
aEventCutsMap["BMcut"] = 1;
aEventCutsMap["VTXposCut"] = 1:
aTrackCutsMap["HasTwPoint"] = 1;
aTrackCutsMap["TrackQuality"] = 1; // inside Chi2 values
aTrackCutsMap["VTXposCut"] = 1:
```

// only 1 track in BM // no VTX points pileup // track has TW point // VTX point inside TG geometry // VT track matches with BM track

Calculate the **vields** (filtering the previous selection cuts) ٠

```
//--- Yield
aVariablesList.push back("Charge");
aVariablesList.push back("Theta"):
FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "1 Reco Charge");
```

Calculate the **efficiency** ٠

```
//--- Efficiency
aEffPathList.push back("1 Reco MC Theta");
aEffPathList.push back("0 MC Ref Theta");
ComputeEfficiencies(aEffPathList, aVariablesList);
```

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}\;N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

TANAactCrossSection

After Loop():

Applying selection cuts

```
//--- Selection Cuts
aEventCutsMap["BMcut"] = 1;
aEventCutsMap["VTXposCut"] = 1; // no VTX points pileup
aTrackCutsMap["HasTwPoint"] = 1; // track has TW point
aTrackCutsMap["TrackQuality"] = 1; // inside Chi2 values
aTrackCutsMap["VTXposCut"] = 1:
```

// only 1 track in BM // VTX point inside TG geometry // VT track matches with BM track

Calculate the **vields** (filtering the previous selection cuts) ٠

```
//--- Yield
aVariablesList.push_back("Charge");
aVariablesList.push back("Theta"):
FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "1 Reco Charge");
```

Calculate the **efficiency**

```
//--- Efficiency
aEffPathList.push back("1 Reco MC Theta");
aEffPathList.push back("0 MC Ref Theta");
ComputeEfficiencies(aEffPathList, aVariablesList);
```

Calculate the **luminosity**

```
//--- Luminosity
ComputeLuminosity(d Ev, aEventCutsMap, "1 Reco Charge");
```

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}\;N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

Giacomo Ubaldi

TANAactCrossSection

After Loop():

Applying selection cuts

```
//--- Selection Cuts
aEventCutsMap["BMcut"] = 1;
aEventCutsMap["VTXposCut"] = 1;
aTrackCutsMap["HasTwPoint"] = 1;
aTrackCutsMap["TrackQuality"] = 1; // inside Chi2 values
aTrackCutsMap["VTXposCut"] = 1:
```

- // only 1 track in BM // no VTX points pileup // track has TW point // VTX point inside TG geometry // VT track matches with BM track
- Calculate the **vields** (filtering the previous selection cuts) ٠

```
//--- Yield
aVariablesList.push back("Charge");
aVariablesList.push back("Theta"):
FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "1 Reco Charge");
```

Calculate the **efficiency**

```
//--- Efficiency
aEffPathList.push back("1 Reco MC Theta");
aEffPathList.push back("0 MC Ref Theta");
ComputeEfficiencies(aEffPathList, aVariablesList);
```

Calculate the **luminosity**

```
//--- Luminosity
ComputeLuminosity(d Ev, aEventCutsMap, "1 Reco Charge");
```

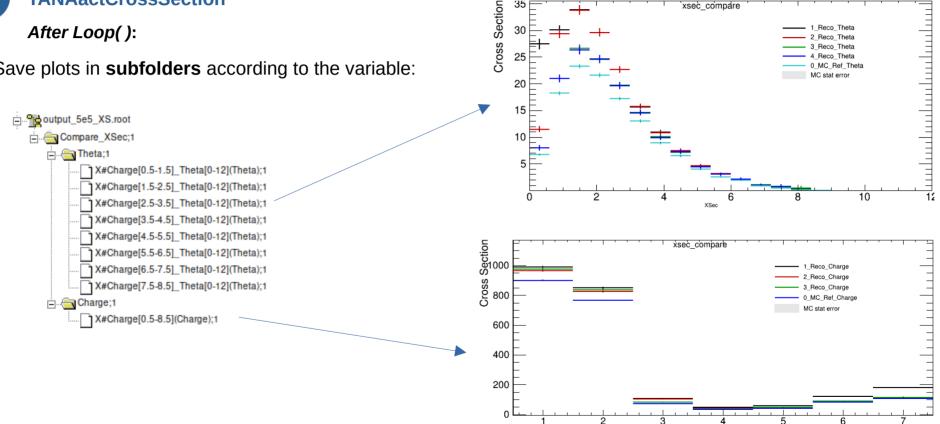
$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}\;N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

Calculate the Cross Section

//--- Cross Section ComputeXSec

"1_Reco_Charge",	// yield
"1_Reco_MC_Charge",	<pre>// efficiency</pre>
"",	// purity
"1_Reco_Charge");	<pre>// luminosity</pre>
	"1_Reco_MC_Charge", "",

Results


5

Giacomo Ubaldi

TANAactCrossSection

After Loop():

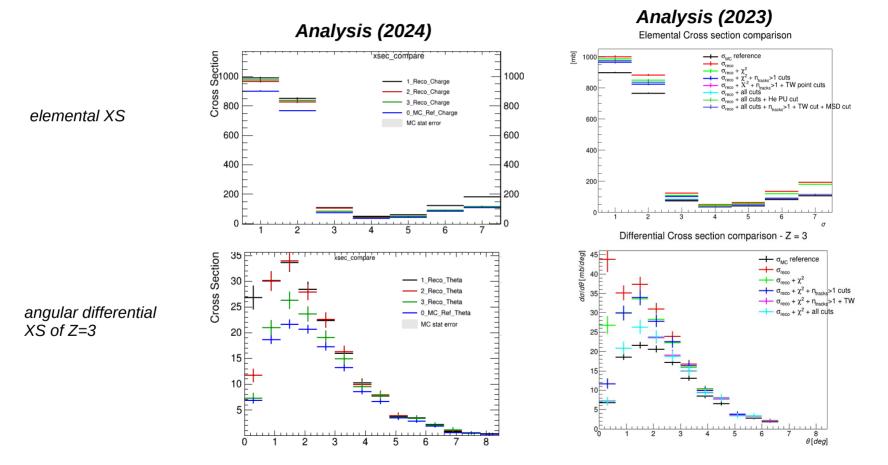
• Save plots in **subfolders** according to the variable:

35

30

25

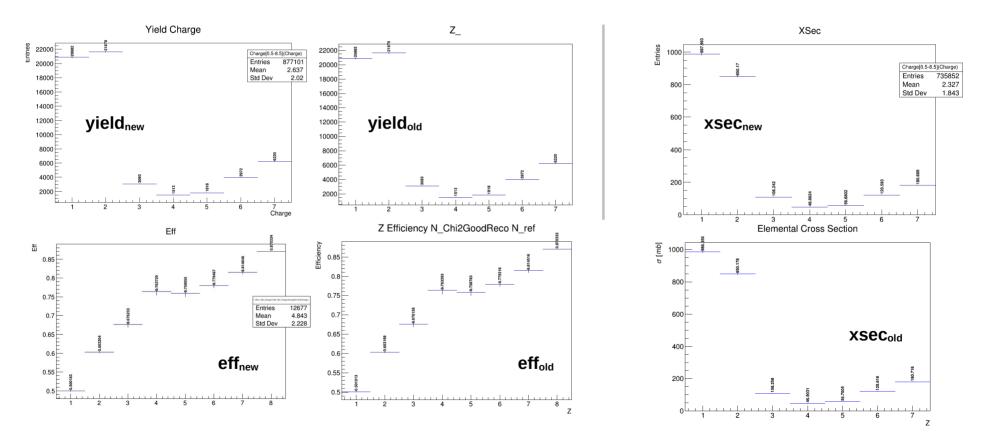
xsec compare


Reco Theta

Reco Theta 3 Reco Theta

Reco Theta

Analysis Comparisons


example: GSI2021_PS_MC dataset

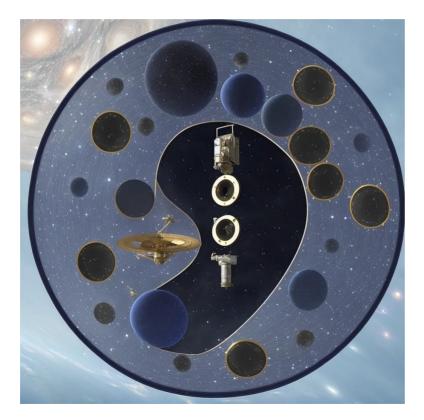
Giacomo Ubaldi

Results

 New Analysis (2024) vs "old" one (2023) example: elemental cross section (Z) GSI2021_PS_MC

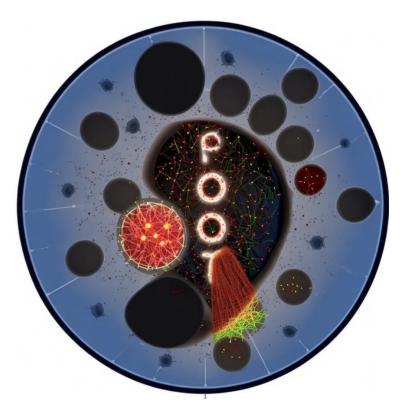
Conclusions and future perspectives

- All the steps of analysis cross section measurements introduced
- New analysis organized in classes and actions: 1 big class vs more specific classes
- Much less time consuming: ~ dozen of hours vs ~ few hours
- CONDOR script to be launched by TIER1
- Everything is **done in SHOE** (before SHOE + external machinery)
- Closure test comparison with the previous analysis framework done succesfully
- Refine details like paths and parameter files (f.e. parameters binning, "standard" cuts...)
- Compare GSI21_MC (GM Trento 2023) vs GSI21_PS_MC
- When everything is fixed, the framework could be easily applied to all the data takings


 → apply closure tests to all the campains
 (HIT22, CNAO23, CNAO24 ...)

Thank you for the attention!

Thank you for the attention!



Thank you for the attention!

Back up slides

Selection Cuts

1

TANAactNtuSelectionCuts

In Loop(): 🦓

- For every reconstructed track, two **cuts containers** are associated, for *events* and for *tracks*
- According to every cut, a value of 1,0 or exceptions is associated

key	description	values
SCcut	There is NOT pileup in the SC and the energy release is higher than the one of a primary (> .005 GeV)	1: the condition is hold 0 : the condition is not verified **-99** : some errors expect
BMcut	Only one track crosses the BM detector	1: the condition is hold 0 : the condition is not verified **-99** : some errors expect
NTracksCut	The number of reconstructed tracks should be higher than 1	1: the condition is hold 0 : the condition is not verified
TWnum	The number of reconstructed tracks is the same of the reconstructed TW points	1: the condition is hold 0 : the condition is not verified **-99** : some errors expect

Selection Cuts

1

TANAactNtuSelectionCuts

In Loop(): 🦓

- For every reconstructed track, two **cuts containers** are associated, for *events* and for *tracks*
- According to every cut, a value of 1,0 or exceptions is associated

Loaded	Event:	1
Event cu	ıts	
[BMcut]		
[NTracks	sCut] =	0;
[SCcut]	= -99;	
[TWnum]	= 1;	
Track cu	ıts	
Element	0	
[TWclone	2] = 0;	
[TrackQu		
[VTXpos([ut] = 1	;

key	description	values
TWclone	The specific track has the same TWpoint of <i>at least</i> another track	1: the condition is hold 0 : the condition is not verified **-99** : the track has not TW point
TrackQuality	The specific track has a residual < 0.01 and a p-value > 0.01	1: the condition is hold 0 : the condition is not verified
VTXposCut	The reconstructed VTX point is positioned within the target dimensions	1: the condition is hold 0 : the condition is not verified **-99** : some errors expect

Reco quantities

TANAactNtuGlbTrackCounts

In Loop():

For every track, the main quantities are recorded in containers, both via reconstruction and via Monte Carlo

• The present variables are now: charge, angle, beta

MC tracks MAP:
Element 0
[Beta_true]
0.000000;
[Charge_true]
8.000000;
[Theta_true]
0.000000;

Event: 95 reco tracks MAP: Element 0 [Beta] 0.685597; [Charge] 2.000000: [Theta] 3.245622; Element 1 [Beta] -1.313688;[Charge] 0.000000: [Theta] 3.473851; Element 2 [Beta] 0.639217; [Charge] 1.000000; [Theta] 7.711094; Element 3 [Beta] 0.634058; [Charge] 1.000000;

Giacomo Ubaldi

MC reference Cuts & quantities

3

TANAactNtuMCref

In Loop(): 🛛 🖓

For every TAMCParticle, three containers are associated:

• a container fo element-wise MC cuts

MC tracks MAP:
Element 0
[Beta_true]
0.000000;
[Charge_true]
8.000000;
[Theta_true]
0.000000;

description	values
The MC particle crosses the TG (so no fragmentation before it).	1: the condition is hold 0 : the condition is not verified
If the ID ==0 it is also a primary particle.	

MC reference Cuts & quantities

3

TANAactNtuMCref

In Loop():

For every TAMCParticle, three containers are associated:

- a container fo element-wise MC cuts
- a container for track-wise MC cuts

MC tracks MAP:
Element 0
[Beta_true]
0.000000;
[Charge_true]
8.000000;
[Theta_true]
0.000000;

key	description	values
GoodParticle	The particle is a primary or a fragment generated in the TG which crosses the two planes of the TW and go beyond (so no secondary fragmentation)	1: the condition is hold 0 : the condition is not verified

MC reference Cuts & quantities

TANAactNtuMCref

In Loop(): 🖓

For every TAMCParticle, three containers are associated:

- a container fo element-wise MC cuts
- a container for track-wise MC cuts
- a container of true quantities of variables
 - The present variables are now: charge, angle, beta

MC tracks MAP:
Element 0
[Beta_true]
0.000000;
[Charge_true]
8.000000;
[Theta_true]
0.000000;

TANAactCrossSection

In Loop():

Two **TTree** are filled with the retrieved quantities for **all the tracks**:

- aTree for reco-wise tracks
- aTreeMC for MC_truth-wise MC cuts

4

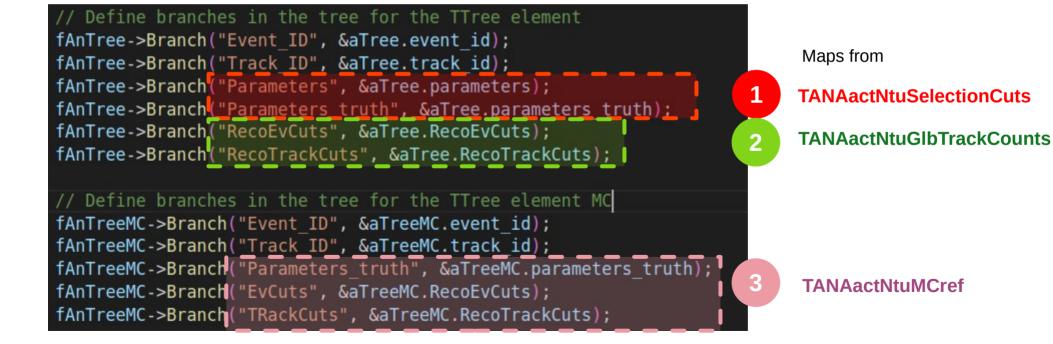
TANAactCrossSection

In Loop():

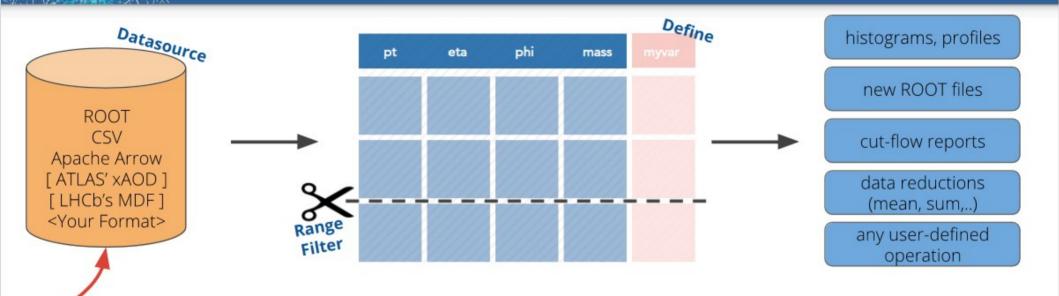
Two **TTree** are filled with the retrieved quantities for **all the tracks**:

- aTree for reco-wise tracks
- aTreeMC for MC_truth-wise MC cuts

// Define branches in the tree for the TTree element fAnTree->Branch("Event_ID", &aTree.event_id); fAnTree->Branch("Track_ID", &aTree.track_id); fAnTree->Branch("Parameters", &aTree.parameters); fAnTree->Branch("Parameters_truth", &aTree.parameters_truth); fAnTree->Branch("RecoEvCuts", &aTree.RecoEvCuts); fAnTree->Branch("RecoTrackCuts", &aTree.RecoTrackCuts);


// Define branches in the tree for the TTree element MC fAnTreeMC->Branch("Event_ID", &aTreeMC.event_id); fAnTreeMC->Branch("Track_ID", &aTreeMC.track_id); fAnTreeMC->Branch("Parameters_truth", &aTreeMC.parameters_truth); fAnTreeMC->Branch("EvCuts", &aTreeMC.RecoEvCuts); fAnTreeMC->Branch("TRackCuts", &aTreeMC.RecoTrackCuts);

TANAactCrossSection


In Loop():

Two **TTree** are filled with the retrieved quantities for **all the tracks**:

- aTree for reco-wise tracks
- aTreeMC for MC_truth-wise MC cuts

ROOT Declarative Analysis: RDataFrame

Goals:

Customisation point,

public interface!

- → Be the **fastest** way to manipulate HEP data
- → Be the go-to ROOT analysis interface from laptop to cluster
- → Consistent interfaces in Python and C++
- → Top notch <u>documentation and examples</u>

https://indico.cern.ch/event/759388/contributions/3356304/attachments/1815599/2968077/RDF__HSF_JeffersonLab.pdf

4

TANAactCrossSection

// Run a parallel analysis ROOT::EnableImplicitMT(); data х, у ROOT::RDataFrame df(dataset); filter auto df2 = df.Filter("x > 0") x > 0.Define("r2", "x*x + y*y"); auto rHist = df2.Histo1D("r2"); df2.Snapshot("newtree", "newfile.root"); Write datasets to disk, also in parallel.

data transformation result define **ROOT** file $r^2 = x^2 + v^2$ x, y, r2 histo r2

Giacomo Ubaldi

https://indico.cern.ch/event/759388/contributions/3356304/attachments/1815599/2968077/RDF_HSF_JeffersonLab.pdf 34

Selection Cuts, 1

1

TANAactNtuSelectionCuts

In Loop():

For every reconstructed track, two cut maps are associated:

- *fEventCutsMap* for element-wise cuts
- fTrackCutsMap for track-wise cuts

// event cuts

SCpileUpCut(); // add "SCcut" in event map BMCut(); // add "BMcut" in event map TwClonesCut(); // add "TWclone" in track map and "TWnum" cut in event map NTracksCut(); // add "NTracksCut" in event map

```
// track cuts
for (int it = 0; it < nt; it++)</pre>
```

```
(
```

fGlbTrack = fNtuGlbTrack->GetTrack(it); VtxPositionCut(it, fGlbTrack); // add "VTXposCut" cut in track map TrackQualityCut(it,fGlbTrack); // add "TrackQuality" cut in track map

if (isMC){ // MC cuts

MC_VTMatch(it,fGlbTrack); // add "MC_VTMatch" cut in track map MC_MSDMatch(it,fGlbTrack); // add "MC_MSDMatch" cut in track map MC_TwParticleOrigin(it,fGlbTrack); // add "MC_TwParticleOrigin" cut in track map

MC_isGoodReco(it,fGlbTrack); // add "MC_isGoodReco" cut in track map

- for every cut, a key of the map is generated
- an int value of **0,1** (or others if exception) is associated to each key

Event cuts:

// Check if there is pile up in the SC, triggering an event // Check if there is only one track in BM // Check events with N° of tracks == N° of TW points Check the tracks with the same TW point // Check if N° of tracks for every event is > 1

Track cuts:

 $\prime\prime$ Cuts about vtx position with the target dimensio $\prime\prime$ Cuts about quality chi2 and residual of a track

// Compare the track with the MC_ID to infer if it is a good reco track

Reco quantities, 1

Giacomo Ubaldi

TANAactNtuGlbTrackCounts

In Loop():

The idea is to create a map for every track, in which the main variables (the one for cross sections) are inserted

- *fTrackGlbCounts_reco* for **reconstructed** values of variables
- *fTrackGlbCounts_MC* for **true** values of variables

```
for (int it = 0; it < nt; it++)

fGlbTrack = fNtuGlbTrack->GetTrack(it);
Float_t Z_reco = fGlbTrack->GetTwChargeZ();
Float_t Th_reco = fGlbTrack->GetTgtThetaBm()* TMath::RadToDeg();
Float_t Tof_meas = fGlbTrack->GetTwTof() - fPrimary_tof;
Float_t Beta_reco = fGlbTrack->GetLength() / Tof_meas / TAGgeoTrafo::GetLightVelocity();

fTrackGlbCounts_reco[it]["Charge"] = Z_reco;
fTrackGlbCounts_reco[it]["Theta"] = Th_reco;
fTrackGlbCounts_reco[it]["Beta"] = Beta_reco;
```

// Charge // Theta // Beta

```
mcNtuPart = (TAMCntuPart *)fpNtuMcTrk->Object();
TAMCpart *particle = mcNtuPart->GetTrack(TrkIdMC);
Float_t Z_true = particle->GetCharge();
Float_t Th_true = 0; //TO BE MODIFIED
Float_t Beta_true = 0; //TO BE MODIFIED
```

```
fTrackGlbCounts_MC[it]["Charge_true"] = Z_true;
fTrackGlbCounts_MC[it]["Theta_true"] = Th_true;
fTrackGlbCounts_MC[it]["Beta_true"] = Beta_true;
```

// Charge // Theta // Beta

36

Analysis SHOE structure

- Based on the Analysis classes developed by Chris (see Analysis Meeting 27/02/12 [1])
- final developments in SHOE branch Ubaldi_temp

TANAbase	
CMakeLists.txt	
📑 GlobalAna.hxx	
📑 TANAactBaseNtu.hxx	
📑 TANAactCrossSection.hxx	
📑 TANAactDataReduction.hxx	
📑 TANAactNtuGlbTrackCounts.hxx	
📑 TANAactNtuMass.hxx	
📑 TANAactNtuMCref.hxx	
📑 TANAactNtuSelectionCuts.hxx	
📑 TANAactPtReso.hxx	
h TANAbase.LinkDef.h	

Analysis SHOE structure

- Based on the Analysis classes developed by Chris (see Analysis Meeting 27/02/12 [1])
- final developments in SHOE branch Ubaldi_temp

т	٨	ĸ	I.	٨	Ь	-	~	0	
		1	1	M	υ	a	2	C	

CMakeLists.txt

🖶 GlobalAna.hxx

- 🖶 TANAactBaseNtu.hxx
- HandactCrossSection.hxx
- 🖶 TANAactDataReduction.hxx
- 🖶 TANAactNtuGlbTrackCounts.hxx
- 🖶 TANAactNtuMass.hxx
- 📑 TANAactNtuMCref.hxx
- 🖶 TANAactNtuSelectionCuts.hxx
- 🖶 TANAactPtReso.hxx
- h TANAbase.LinkDef.h

- based on the structure of BaseReco class
- Read all geomaps/config files for all included detectors
- Read all containers for the included detectors
- Create and require the dedicated class analysis

Analysis SHOE structure

- Based on the Analysis classes developed by Chris (see Analysis Meeting 27/02/12 [1])
- final developments in SHOE branch Ubaldi_temp

TANAbase	_									
IANADOSC		т	Λ	N		Λ	h		C	
					ч.			0	0	

🔊 CMakeLists.txt

🖷 GlobalAna.hxx

📑 TANAactBaseNtu.hxx

- 🖶 TANAactCrossSection.hxx
- 🖷 TANAactDataReduction.hxx
- 🖷 TANAactNtuGlbTrackCounts.hxx
- 📑 TANAactNtuMass.hxx
- 📑 TANAactNtuMCref.hxx
- 🖶 TANAactNtuSelectionCuts.hxx
- 🖶 TANAactPtReso.hxx
- h TANAbase.LinkDef.h

- contains the global track container, target/beam and FOOT geometry
- implementation of plotting methods

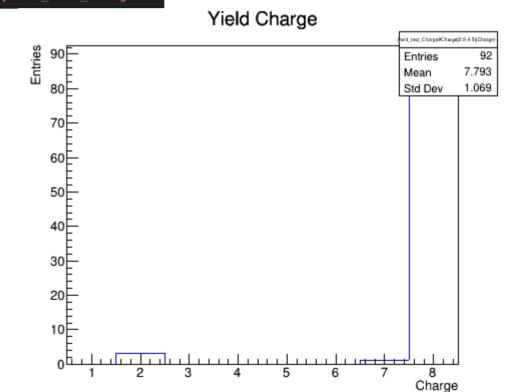
Analysis SHOE structure

- Based on the Analysis classes developed by Chris (see Analysis Meeting 27/02/12 [1])
- final developments in SHOE branch Ubaldi_temp

Improved Interfaces

TTreeReader reader(data);
TTreeReaderValue<A> x(reader, "x");
TTreeReaderValue y(reader, "y");
TTreeReaderValue<C> z(reader, "z");
what we
while (reader.Next()) {
 if (IsGoodEntry(*x, *y, *z))
 h->Fill(*x);
 what we
mean

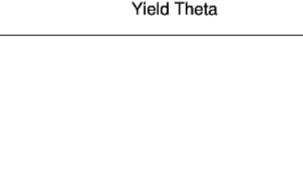
- full control over the event loop
- requires some boilerplate
- users implement common tasks again and again
- parallelisation is not trivial


RDataFrame: declarative analyses

RDataFrame d(data); auto h = d.Filter(IsGoodEntry, {"x","y","z"}) .Histo1D("x");

- full control over the analysis
- no boilerplate
- common tasks are already implemented
- ? parallelization is not trivial?

Charge yield


aEventCutsMap["TWnum"] = 1; aTrackCutsMap["TrackQuality"] = 1; aVariablesList.push_back("Charge"); FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "yield_test_Charge");

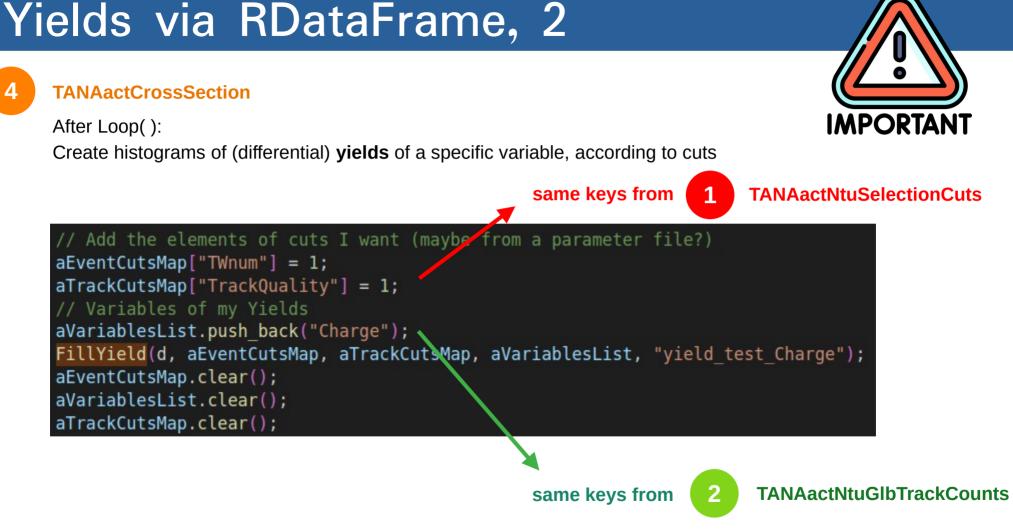


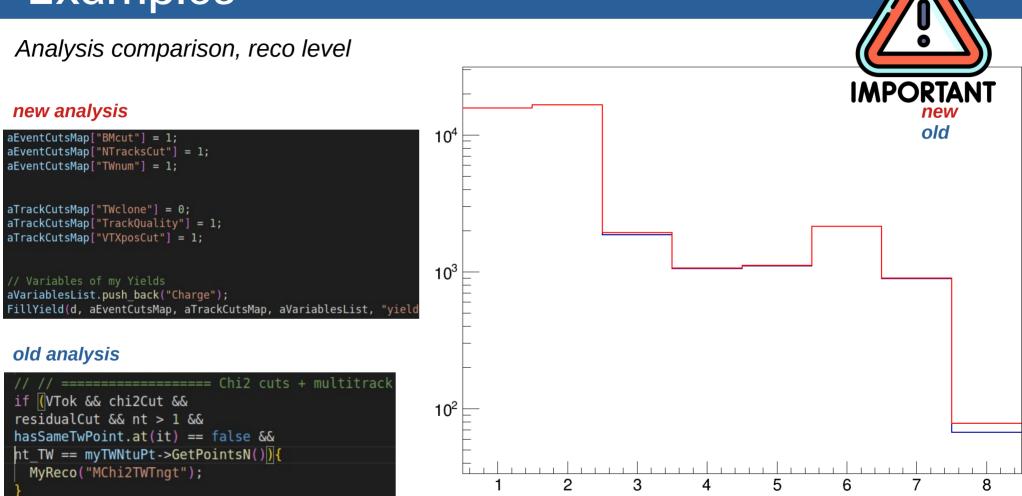
test3.root

Theta yield

vield test Theta010-151(Theta)

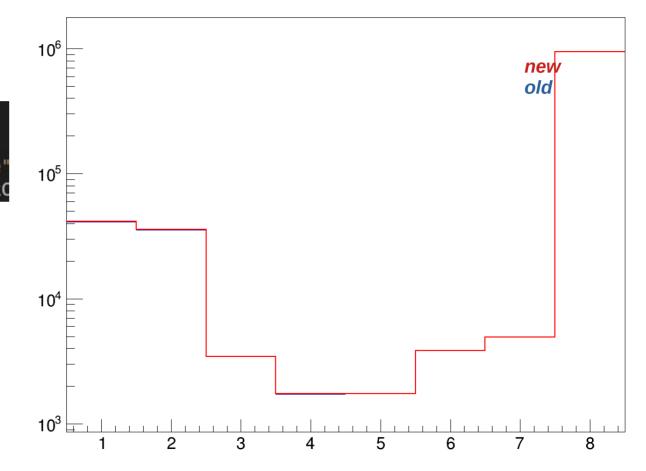
92


Yields via RDataFrame, 1


TANAactCrossSection

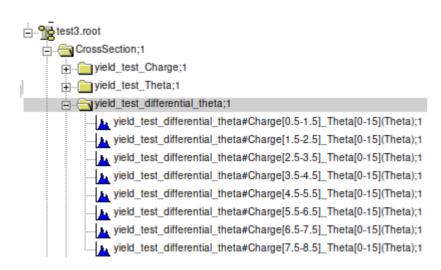
After Loop(): Create histograms of (differential) **yields** of a specific variable, according to cuts

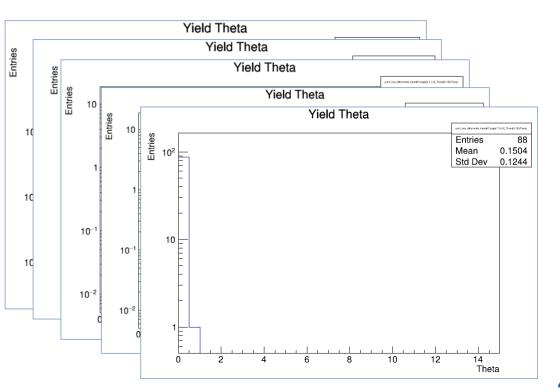
Δ


Analysis comparison, MC level

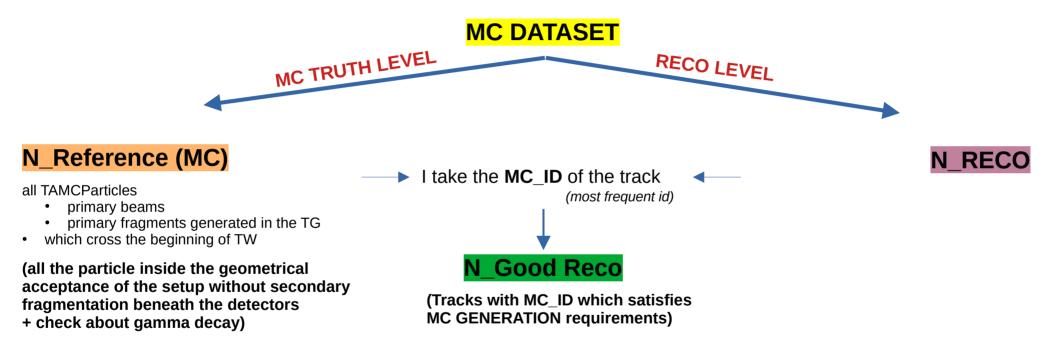
new analysis

aEventCutsMap["MCgoodEvent"] = 1; aTrackCutsMap["GoodParticle"] = 1; aVariablesList.push_back("Charge_true" FillYield(d_MC, aEventCutsMap, aTrackC


old analysis


// MCParticleStudies();
//***** loop on every TAMCparticle:
FillMCPartYields(); // N_ref

Theta yield, differential in charge


aEventCutsMap["TWnum"] = 1; aTrackCutsMap["TrackQuality"] = 1; aVariablesList.push_back("Charge"); aVariablesList.push_back("Theta"); FillYield(d, aEventCutsMap, aTrackCutsMap, aVariablesList, "yield_test_differential_theta");

Analysis strategy

In the analysis, I am considering the following levels:

Analysis strategy

To compute angular differential cross section:

$$\frac{d\sigma}{d\theta}(Z,\theta) = \frac{Y(Z,\theta)}{N_{beam} N_{target} \Omega_{\theta} \epsilon(Z,\theta)}$$

where:

Y:fragment countsN_RECO N_{beam} :n° of primary eventsn° of primary events N_{target} :n° of scattering centers per unit areaE:efficiencyN_Good Reco Ω_{9} :angular phase space