

CNAO tests with NIT emulsions

A. Alexandrov, T. Asada, <u>V. Boccia</u>, N. D'Ambrosio, G. De Lellis, G. Galati, A. Lauria, S. Masci, M.C. Montesi, T. Naka, V. Tioukov

(vincenzo.boccia@na.infn.it)

Finanziato dall'Unione europea NextGenerationEU

XVII FOOT General Meeting, Cherasco, 17/12/2024

Outline

- Short summary of NIT activities
- NIT sensitivity to protons: the results so far
- New sensitization tests in Laboratori Nazionali del Gran Sasso (LNGS)
 - 1. Sulphur-plus-gold (Au-S)
 - 2. Triethanolamine (TEA)
- November 2024 test beam in CNAO
 - Measurement strategy and goals
 - Expectations of NIT Fading
- NIT measurements in Japan
 - HIMAC test beam (December 2024)
 - Future measurement campaign in Japan (January-March 2025)

Nano Imaging Trackers (NIT)

- Nano Imaging Trackers (NIT) are a novel kind of nanometric nuclear emulsion films that was designed to achieve a directional direct detection of WIMP-induced nuclear recoils
- The expected nuclear recoil track lengths in NIT are of the order of **100 nm** → extremely high spatial resolution required
- New production method: finer AgBr crystals (tunable from 20 nm to 80 nm) and dedicated low temperature development
- NIT production facilities in Nagoya (Japan) and Gran Sasso (LNGS, Italy)

LNGS Gel Production Machine

Undeveloped NIT sample

DAMON: A new approach to Target Fragmentation

- The DAMON (Direct meAsureMent of target fragmentation) project (PRIN 2022) aims at measuring for the first time proton-induced target fragmentation in direct kinematics
- Direct detection of short fragments made possible by NIT **acting both as target and tracking devices**
- The estimated interaction probability for 200 MeV protons in a detector with 20 NIT is $\sim 1\%$
- Among all interactions (Geant4 Simulation):
 - ~38 % occur in the emulsion gel (C, O, H, N, Ag, Br)
 - ~62% occur in the plastic support (Polystirene, $(C_8H_8)_n$)
 - Less than 10% of interactions on Ag, Br
- Typical energies of fragments, of the order of MeV, make them travel at least 300 nm → detectable!

XVII FOOT General Meeting, Cherasco 17/12/2024

Sensitivity Issues: Test with Trento Data (1)

- The recorded sensitivity to primary protons (211 MeV) was extremely low
- The film was tilted by ~ 15° with respect to the beam direction so one expects approximately sin(15°)*(180)*0,12 ~ 6 protons per view (40x objective, 400x300 µm² views)

Most Views are Empty!

From XV FOOT General Meeting

NIT Exposure at CNAO (November 2023)

From XV FOOT General Meeting

- The samples exposed at CNAO are aimed at:
 - Testing NIT sensitivity to protons at 70 MeV (exposure with a single spot of 10⁷ primaries)
 - Testing NIT-OPERA double coating and tracking with thin OPERA layers (exposure with a single spot with 10⁵ primaries)
 - Mechanical test with double side pouring on 170 µm thick cover glasses
- For this purpose, NIT gel from two separate batches was poured on 2 mm thick slide-glasses
- The samples have been developed in LNGS and they need to be scanned (analysis on-going, more details will be given in future meetings)

First Results from 2023 CNAO Test Beam

- For the sensitivity test, NIT films were exposed to a high intensity spot of 10⁷ protons @70 MeV
- NIT samples were produced in LNGS and kept in a refrigerated box during transport to minimize thermal noise
- Usual NIT development was perfomed in LNGS and the samples have been brought to Naples

OPERA-like and NIT layers

together! More tests needed

From XVI FOOT General Meeting

CNAO Exposure: single high intensity spot (10^7 protons)

MC Study of Proton Sensitivity

XVI FOOT General Meeting, Napoli 26/6/2024

¹⁰ μm AgBr Box in Air

New Sensitization Approaches

- The 2023 test beam in CNAO showed that NIT with HA sensitization and MAA (5°C) development are not sensitive to protons @70 MeV
- HA sensitization uses sodium sulfite (halogen acceptor) to reduce the recombination due to Br at the surface of AgBr(I) crystals, without modifying the structure of the crystals
- DAMON needs a more aggressive approach with sensitization \rightarrow new tests performed in LNGS

Unsensitized vs TEA sensitized

Sulphur-plus-gold (Au-S)

Triethanolamine (TEA)

Acts by forming Ag_2S sensitization center on the surface of the AgBr(I) crystals. Gold helps the Ag_2S sensitization center and the development of latent image Extensive experience with OPERA-like emulsions (sensitive to MIP), but no experience with NIT

Acts by partially melting AgBr(I) crystals thus leading to the formation of AgOH which becomes Ag_2O and H_2O Ag_2O can then be reduced to Ag thus **increasing the amount of silver** in the development centers

Sensitization Tests in LNGS

Sensitizer	Condition	Exposure
Au-S	OPERA recipe	α, γ, β + ref
Au-S	OPERA recipe adjusted by surface ratio (70 nm vs 200 nm)	α, γ, β + ref
TEA	5 g/L solution, dip for 15 minutes	α,γ + ref
TEA	5 g/L solution, dip for 10 minutes	α,γ + ref
TEA	24.5 g/L solution, dip for 15 minutes	α,γ + ref
TEA	24.5 g/L solution, mix to gel (same proportion as HA)	α,γ + ref
HA	Standard recipe	α,γ + ref

Radioactive Sources in LNGS

Source	Emission	Activity	Exposure time
LNGS-150	Mainly γ at 60 keV from ^{241}Am	402 <i>kBq</i> (08/11/24)	3 min
LNGS-160	²⁴¹ Am with thin window to for α radiation (~ 5.4 MeV)	73.9 <i>kBq</i> (07/11/24)	4 min
LNGS-036	β from Sr-90	231 <i>kBq</i> (07/11/24)	30 s

LNGS-150

LNGS-71

~3 *mm*

Au-S and TEA: Very First Results

- In general, an increase in sensitivity comes with an increase in noise (fog for NIT)
- For Au-S sensitization, the second condition (adjusted ratio) proved to be **too** aggressive (gray but transparent emulsions with MAA development)
- For TEA, there was an issue keeping the samples too long in the sensitizer solution (probably the interaction of TEA with the undercoat led to emulsions detaching at the sides)

Sensitizer	Condition
TEA	Dip for longer than 7-8 minutes (5 g/L, 24.5 g/L)

Sensitivity to Gamma Radiation

- Photo-electrons from the gamma source have too low ionization to be detectable in HA-sensitized NIT, except for the very last part of their range
- Therefore, HA-sensitized NIT only show isolated grains coming from photo-electrons when exposed to the gamma source
- A simple way to quantify the relative sensitivity of different batches (or different sensitization) consists of counting the number of sensitized grains in the central part of the irradiated region

Measurement of γ sensitivity

- 1. Line scan (200 views) along Y direction
- 2. Line scan (200 views) along X direction
- 3. Line scan along the central part of the irradiated region (200 views, Y direction)
- Compare the height of the peak (~ number of grains) after an exposure to the same source, for the same time and at the same illumination conditions

Visual Inspection: Au-S

- Detail from 1 microscope view (~ 70 \times 50 μm^2) near the gamma peak
- Many short tracks (2 to 3 grains) visible, a few even longer ones
- Appreciable increase in sensitivity but also in fog

Relative Sensitivity: HA vs Au-S

Line scan (Y direction, 200 views) along the peak of the gamma source (3 minutes standard exposure) HA

fitYline gr.y+y {(((gr.z>0.000000&&gr.z<20.000000&&vid>=0&&vid<=199)&&(ngr<3000))&&(abs(gr.x)<25&&abs(gr.y)<25))&&(flad==0) 49474 Entries 2400F 3092 Mean RMS 2184 2200 χ² / ndf 475.5/44 2000F 3.371e+009 ± 1.171e+008 p0 2977 ± 10.7 p1 1800F p2 -1301 ± 24.7 1600 $\textbf{300.2} \pm \textbf{9.6}$ p3 1400F 1200 1000E 800F 600E 400E 200

-600040002000

Au-S

Visual Inspection: TEA (mix)

- Detail from 1 microscope view (~ 70 \times 50 μm^2) near the gamma peak
- Many short tracks (2 to 3 grains) visible, a few even longer ones
- Similar conclusions to Au-S samples from eye-check

Relative Sensitivity: HA vs TEA (mix)

 Line scan (Y direction, 200 views) along the peak of the gamma source (3 minutes standard exposure)

LNGS Test Results

Sensitizer	Condition	Exposure	
Au-S	OPERA recipe	α, γ, β + ref	 Both Au-S and TEA consistized
Au-S	OPERA recipe adjusted by surface ratio (70 nm vs 200 nm)	α, γ, β + ref	NIT showed a significantly
TEA	5 g/L solution, dip for 15 minutes	α, γ + ref	than HA samples
TEA	5 g/L solution, dip for 10 minutes	α,γ + ref	 Fog is larger in Au-S samples (and preparation)
TEA	24.5 g/L solution, dip for 15 minutes	α,γ + ref	is more complex)
TEA	24.5 g/L solution, mix to gel (same proportion as HA)	<i>α,γ</i> + ref	 TEA sensitization seems to be the
HA	Standard recipe	<i>α</i> , γ + ref	best approach

NIT Exposures in CNAO 2024

Sensitizer Recipe	Support Material	Exposures	Purpose
Au-S with OPERA recipe HA TEA (mix)	Plastic	¹² C at 200 MeV/n and 400 MeV/n	Alignment + Tracking
Au-S with OPERA recipe HA TEA (mix)	Slide Glasses (1 mm) Plastic	p at 15 MeV, 30 MeV, 45 MeV, 55 MeV, 70 MeV, 200 MeV	Sensitivity Test Alignment + Tracking (with plastic if sensitivity is

XVII FOOT General Meeting, Cherasco 17/12/2024

high enough)

Results from CNAO 2024

- New RP rules → exposed NIT samples are still in CNAO
- Discussion between RP experts (Napoli & CNAO) on-going, updates expected at the start of January 2025
- No results before
 2025 Japan campaign

Results from CNAO 2024

- New RP rules → exposed NIT samples are still in CNAO
- Discussion between RP experts (Napoli & CNAO) on-going, updates expected at the start of January 2025
- No results before
 2025 Japan campaign

NIT Fading: a quick look

A/B

- NIT exposed at the 2024 test beam in CNAO are currently stored at -20°C
- No previous experience with protons, but NIT fading test with alpha and gamma sources were performed in the past

Exposure A Store in each place Exposure B development -20°C Control to room temperature

Fading time

B / Oday

Relative Fading @-15 °C

140

Results from CNAO 2024

- Only educated **guess** of the sensitivity to protons possible
 - 1. Eye checks of Au-S and TEA samples have shown short tracks (~ 1 μm in length)
 - 2. At 30 keV electrons are expected to have ~ $1 \mu m$ CSDA range in emulsion (NIST database)
 - 3. The total stopping power for 30 keV electrons in water is equal to $\sim 9.6 MeV/cm$
 - 4. The stopping power is comparable to protons at around ~ 70 MeV
- Results from reference samples show comparable levels of background (no major issues during transport)

XVII FOOT General Meeting, Cherasco 17/12/2024

NIT Measurements in Japan (HIMAC)

- TEA sensitization is also being investigated by T. Naka and T. Asada in Japan
- Latest measurement: test beam at HIMAC, Chiba (13/12/2024) exposing NIT to 290 MeV/n ^{12}C

- Purpose: testing crystal efficiency with horizontal exposures to carbon ions (several TEA conditions tested)
- Analysis on-going at Toho university

12C 290 MeV/n @HIMAC HA

Pictures by T. Asada

Upcoming NIT Measurements in Japan

- Many activities planned from ~ January 2025 to March 2025
- Machine time booked at Nagoya proton therapy center (3 exposure slots are expected to be available)

- Define <u>optimal sensitization and support material</u> (overlap with 2024 CNAO campaign?)
 - Use of alternative plastic materials like PMMA (first checks show promising optical properties)
 - Testing reversal development for NIT (70 nm) to improve contrast
- <u>Physics measurement</u>: expose a NIT brick to protons to reconstruct vertices
- Work to be done between Nagoya and Toho (Vincenzo, Giuliana + T. Naka, T. Asada)

Conclusions

- New NIT sensitization approaches tested in LNGS and at the 2024 CNAO test beam
- Proton sensitivity still unknown (December 2024)
- Additional measurements to characterize TEA sensitization on-going at HIMAC
- Future
 - TEA sensitization test with more conditions in Japan (January-February 2025)
 - Physics measurement in Japan (March 2025)

Au-S: Background increase over time

- The first tests with Au-S were performed last September
- In November, we sensitized more gel and compared the fog level with the previous batch

Au-S (Sep24, developed in Nov24)

Au-S (Nov24)

XVII FOOT General Meeting, Cherasco 17/12/2024