

VTX at CNAO2024

Chris, Luana, Marco Thanks to: Giacomo U., Riccardo, Yun

Threshold

CNAO2024:

- <u>9/11:</u> Default
- <u>17/11</u>: 6 sigma
 - except run: 6964,6965: Default
- <u>18-11</u>: logbook-threshold
- <u>19-11</u>: logbook-threshold

Luana Testa

Tracking efficiency

#evt with a matched VTX (distance≤ 2mm)

#evt with 1 BM track in the VTX acceptance

Tracking efficiency:

#evt with a matched VTX (distance≤ 2mm) #evt with 1 BM track in the VTX acceptance

Cluster size

- Select events with only 1 track in VTX
- Fill a histogram with cluster sizes from clusters forming tracks

Tracking efficiency:

#evt with a matched VTX (distance≤ 2mm) #evt with 1 BM track in the VTX acceptance

Cluster size

- Select events with only 1 track in VTX
- Fill a histogram with cluster sizes from clusters forming tracks Ο

Sensors efficiency

- Intersection of BM track with the sensors
- search for a cluster near the intersection point
 - #evt with a clust near the intersection point (distance $\leq 2mm$) #evt with 1 BM track in the VTX acceptance

Tracking efficiency:

#evt with a matched VTX (distance $\leq 2mm$) #evt with 1 BM track in the VTX acceptance

Cluster size

- Select events with only 1 track in VTX
- Fill a histogram with cluster sizes from clusters forming tracks Ο

Sensors efficiency

- Intersection of BM track with the sensors
- search for a cluster near the intersection point
 - #evt with a clust near the intersection point(distance $\leq 2mm$) #evt with 1 BM track in the VTX acceptance

Noise (C and p runs):

#cluster not tracked #events with only 1 track in VTX

Noise (Pedestal runs):

#active pixel #events

Luana Testa

9/11/2024 Threshold -> Default

Luana Testa

Protons

Energy scan

Luana Testa

run: 6749, 6764-6767

9/11/2024

1.10

17/11/2024 Threshold -> 6σ

Luana Testa

Protons 230MeV

Threshold of the 17/11

_	17/11	17/11 (default->6964)	18/11 (6σ->7011)
Tracking efficiency	89.81 ± 0.06	24.88± 0.32	91.95 ± 0.21
Sensor 1 efficiency	90.91 ± 0.05	36.49± 0.35	91.33 ± 0.22
Sensor 2 efficiency	90.76 ± 0.05	72.16 ± 0.33	91.13 ± 0.22
Sensor 3 efficiency	90.05 ± 0.05	72.42± 0.33	90.56 ± 0.23
Sensor 4 efficiency	1.23 ± 0.02	0.037± 0.014	86.27 ± 0.27
Cluster size 1	4.45 ± 0.02	1.62 ± 0.01	4.39 ± 0.01
Cluster size 2	4.59 ± 0.02	1.63 ± 0.01	4.49 ± 0.01
Cluster size 3	4.67 ± 0.02	1.62 ± 0.01	4.54 ± 0.01
Cluster size 4	3.74 ± 0.02	1.69 ± 0.17	2.49 ± 0.01

- run of 17/11 are compatible with run at 6σ of the 18/11 supply is used
- the 9/11
 - run 6964 and 6965, taken after a power cycle of VTX →

Luana Testa

○ difference on sensor 4 → 18/11:: some noisy columns of the 4th sensor are masked, and a new power

the last runs of the 17/11 (6964, 6965) are not compatible with previous ones, but are compatible with runs of

Default configuration of threshold

What threshold does Default correspond to?

- protons 230MeV

Threshold	cluster size	Sensor efficiency
Default	1.68 ± 0.01	37.58 ± 0.46
Max	1.67 ± 0.01	76.99 ± 0.33

• previous campaigns:

-	beam	threshold	cluster size	tracking eff
CNAO2023	p(200MeV)	_	1.70 ± 0.09	41.40 ± 4.34
CNAO2024	p(200MeV)	Default	1.69 ± 0.01	32.35 ± 0.41
CNAO2024	p(200MeV)	6σ	4.87 ± 0.02	86.70 ± 0.23

12

What threshold does Default correspond to?

- protons 230MeV

Threshold	cluster size	Sensor efficiency
Default	1.68 ± 0.01	37.58 ± 0.46
Max	1.67 ± 0.01	76.99 ± 0.33

• previous campaigns:

-	beam	threshold	cluster size	tracking eff
CNAO2023	p(200MeV)	-	1.70 ± 0.09	41.40 ± 4.34
CNAO2024	p(200MeV)	Default	1.69 ± 0.01	32.35 ± 0.41
CNAO2024	p(200MeV)	6σ	4.87 ± 0.02	86.70 ± 0.23

-	beam	threshold	cluster size
GSI2021	$^{16}O(400 MeV/u)$		21.390 ± 0.005
CNAO2022	$^{12}C(200MeV/u)$		18.98 ± 0.01
CNAO2023	$^{12}C(200MeV/u)$	-	16.47 ± 0.01
CNAO2024	$^{12}C(200MeV/u)$	Defalut	16.43 ± 0.02
CNAO2024	$^{12}C(200MeV/u)$	6σ	30.99 ± 0.02

17/11/2024 Energy scan (Threshold = 6σ)

Luana Testa

Protons: Energy scan

Luana Testa

17/11/2024 run: 6946-6951

Luana Testa

18/11/2024 Threshold scan

Threshold scan

Luana Testa

run: 7005, 7007-7015, 7017,

Threshold scan

Luana Testa

run: 7005, 7007-7015, 7017,

Luana Testa

Threshold study: 4σ

Vertex - pixel map for sensor 2

run 7014 -> all layer at 4σ

Only the sensor 4 can operate at 4σ !!!

Noise

run pedestal: 6993-6997, 7000

run data: 7005, 7007-7015, 7017, 7018

Noise

run pedestal: 6993-6997, 7000

run data: 7005, 7007-7015, 7017, 7018

18/11/2024 Energy scan (6σ)

Luana Testa

Energy scan 18/11, and comparison with 17/11

Luana Testa

run: 7019, 7021, 7022, 7024,

Δ Come fai..SB

18/11/2024 7025

Impact of threshold optimization on physics runs (C 200MeV/u)

Percentage of valid vertexes:

#evt with a valid vtx, generated within the TG and matched with the BM #evt with 1 BM track in the VTX acceptance

> CNAO2023 :: 1.371±0.029

CNAO2024 :: 1.810 ±0.037

It seems that optimizing the thresholds has increased the percentage of valid vertexes. This supports the hypothesis that, as expected, we are recovering fragmentation vertexes, (ex.: C->B+p).

Luana Testa

CNAO2024: Threshold optimization applied

Sensors efficiency -> Cluster size

VTX Noise - Cluster Size of clusters farest to Bm track

Luana Testa

VTX Noise - Cluster Size of clusters farest to Bm track

17/11/2024 C 200MeV/u, run: 6923

17/11/2024 p 230MeV run: 6929

Sensors efficiency -> Residual

Residual X Bmtrack vs Vtx Clus

Luana Testa

17/11/2024 C 200MeV/u run: 6923

Residual Y Bmtrack vs Vtx Clus

17/11/2024 p 230MeV run: 6929

Sensors efficiency -> Residual (6σ)

Luana Testa

17/11/2024 C 200MeV/u run: 6923

17/11/2024 p 230MeV run: 6929

Sensors efficiency -> Residual

Asymmetry of residual:

- present in all sensors
- present when eliminating noise at cluster size 1
- → Do to the PileUp -> for a more precise analysis it is necessary to observe the (asymmetric) beam size for pileup events

correlation of BM tracks and VT Tracks X position

_	5		corrVtxBrr	1_X_glb
cm	Ĕ		Entries	7241
ef [4 –		Mean x	0.07624
þ	E		Mean y	0.007129
lg l	3 <u></u>		Std Dev x	0.4204
eir	F	l	Std Dev y	0.4302
lan	2			
хp	E			
L Z	1 <u></u>	and the second		
s ol	Ę			
iter	٩			
Ei.	_1E			
rac	Έ			
M	_2 E			
B	Ē			
o X	-3E			
	F			
	-4			
	E		T	
	-5	-4 -3 -2 -1 0 1 2 3	4	5
	(17) (17)	X of VTX vertex pos in gl	b ref frame [cn	n]

Threshold study: 4σ

run 7014 -> all layer at 4σ

Threshold study: 4.5σ

Vertex - pixel map for sensor 2

run 7017 -> all layer at 4.5 σ

Even at 4.5 σ the first 3 sensors have some small features !!

Protons 230MeV

Luana Testa

17/11/2024 run: 6929-6934, 6936-6944

Protons

Look only the quantity VTX stand-alone: cluster size

- run at 15 MeV not usable \rightarrow the VTX doesn't see anything
- run at 70 MeV and 200 MeV + emulsion not usable \rightarrow the thickness of the emulsions is greater, beam centering runs are used at that energy

Energy scan with emulsion

19/11/2024 run: 7053,7054, 7057, 7058,7060, 7061, 7062, 7063, 7064

Beam -> protons

6946->70MeV

Vertex - Beam Profile in VT ref frame

6948->100MeV

Luana Testa

6947->150MeV

Vertex - Beam Profile in VT ref frame

6949->170MeV

Vertex - Beam Profile in VT ref frame

Beam -> protons

6950->200MeV

 $\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0$

Vertex - Beam Profile in VT ref frame

Luana Testa

6951->230MeV

Vertex - Beam Profile in VT ref frame

Noise

Luana Testa

	18/
ayer	laver 1.2
er 1	
er 2	laye
er 3	C 200MeV +TG: 702
er 4	n(230Me
er (clst>=1)	
	pedest

- For carbon, considering all not-tracked clusters includes clusters with a claster size >5, which are not electronic noise but real cluster, such as particles that scattered and re-entered a layer
- The noise level is consistent across different configurations
- Sensor 4 exhibits anomalous behavior, but it has also an unstable pedestal σ

Luana Testa

Noise (17/11/2024)

- Layer Layer 1 Layer 2 Layer 3
- Layer 4
- Layer (clst>=1)

layer 1,2,3,4-> 6σ C 200MeV : 6923-6925, p(230MeV): 6929-6934, 6936, -6944 pedestal: 6918, 6919, 6928, 6945, 6952

18/11/2024

Noise (9/11/2024)

Luana Testa

layer 1,2,3,4-> Default C 200MeV : 6747,6748, p(230MeV): 6750-6753,6756 pedestal: 6755

Threshold study: 4σ

Luana Testa

Vertex - Tracks map for sensor 2

0.6 0.8 -0.6 -0.2 0.4

run 7014 -> all layer at 4σ

The track maps reveal the beam shape

tracks can be reconstructed despite the noise.

This threshold is not viable as half of the detector is non-functional.

(some features also at 4.5σ and 5σ)

39

MC previous campaigns

Luana Testa

• beam more centered at CNAO2022 • VTX at CNAO2023 is 0.52 cm further away

CNAO22PS_MC

-	$ \mod [cm]$	$\sigma [cm]$
x	$(9.664 \pm 0.304) \times 10^{-6}$	$(8.628 \pm 0.033) \times$
у	$(4.327 \pm 0.361) \times 10^{-5}$	$(8.478 \pm 0.041) \times$
Z	$(-1.401 \pm 0.025) \times 10^{-3}$	$(5.192 \pm 0.036) \times$

CNAO23PS_MC

-	mean [cm]	σ [cm]
x	$(1.552 \pm 0.012) \times 10^{-3}$	$(1.168 \pm 0.014) \times$
у	$(4.761 \pm 0.983) \times 10^{-5}$	$(1.133 \pm 0.011) \times$
Z	$(-2.332 \pm 0.103) \times 10^{-3}$	$(8.674 \pm 0.144) \times$

