Beam Monitor @ CNAO2024

Yunsheng Dong

FOOT General Meeting

16/12/2024

The Beam Monitor (BM) detector

Goal

- Measure the beam direction and impinging position on the target
- Resolve VTX pile up

Drift chamber geometry

- 6 staggered layers of cells on X and Y view
- 3 cells (16 mm x 10 mm) x layer
- Contiguous BM layers of the same view are staggered by a half of a cell
- Field wires d ~ 90 μ m, sense wires d ~ 25 μ m \bullet

BN @ CNA02024

Detector status

- New lemo cables 3 m long \bullet
- NO issues for the gas flow (as in CNAO2023)
- Dead channel (discovered in CNAO2023) \bullet successfully repaired

Working point

- The HV has been modified for different beam \bullet particle/energy combination in order to obtain a number of hits per events distribution centred in 13-14 hits
- In principle: 12 hits from the primary + 1-2 hits \bullet from noise (delta rays etc.)

Space time relation

Space-time relation optimization

- Space time relations calculated combining BM time measurements and VTX tracks
- Need alignment, that is done by means of BM and lacksquareVTX tracks -> iterative method
- Initial S-T relation guess from CNAO2023 campaign \bullet is suitable for CNAO2024 (one iteration seems to be sufficient)
- ST rel are different for different particles (also due to \bullet different HV levels)
- S-T rel. optimization conducted during the data taking in few minutes
- No relevant differences has been found for P@ \bullet different energies

Tracking performance

BM track efficiency for 12C @ 200 MeV/u ~ 85-90% \bullet

- S-T rel already optimized \bullet
- Spatial resolution evaluated with the residuals between the BM measured and fitted positions
- Spatial resolution of the order of 50 µm up to 0.6 \bullet cm, then it decreases rapidly with increasing drift distances
- The pull distribution has a devstd close to 1 for almost all the drift distances
- Room for improvement optimizing the track \bullet reconstruction parameters: -track selection matrix binning, track parameters range etc.

-Need time to optimise this parameters and we can expect only a slight improvement of the results

BM-VTX

- Residuals between BM and VTX of the order of 100 µm
- Low VTX pile up
- Both detector show holes in the beam profile due to the BM wires

BM wire profile from other detectors

MSD beam profiles collected @ Trento with p @ 80 MeV

BM wire shadow

- Run 7070: 12C @ 200 MeV/u, beam checked and adjusted on the X axis of about 1 mm. No emulsion setup on the beam line, BM HV: 1740 V
- vtx_target_glbsysY 123433 -0.09369 0.4134 Y[cm]
- Run 7071: 12C @ 200 MeV/u We turned off the BM and added the emulsion between BM and SC
- The beam was well centred in the BM cell, however the BM wire shadow is present in the 7070 run (BM half cell size ~ 8 mm)
- No BM wire shadow without the BM HV
- Wire shadow due to the electric field effect? We need to re-check our previous calculations
- Maybe the BM inefficiency and low spatial resolution at the cell border is influenced by this effect

Electric field effect

Electric field map evaluated by means of Garfield++ MC simulation tool with the BM HV at 2200 V

Deflection is a function of "impact parameter" of the incoming particle with respect to the sense wire

- The high electric field close to the sense wire could contribute to the deflection of a charged particle?
- In the space region close to the sense wire E(r) is very similar to that of a wire of radius a inside a cylindrical cathode of radius b: $E(r) = V/(log[b/a] r) -> E(a) \sim 294 kV/cm (b = 0.5 cm, 2a)$ $= 25 \,\mu\text{m}, \, \text{V} = 2200$
- This allowed to perform a MC FLUKA simulation in vacuum (trajectory calculated numerically solving differential equation with Runge-Kutta methods).
- Result: for a ¹²C at 200 MeV/u, the maximum deflection would be of the order ~8 10⁻⁵ rad
- Significative deflection could be observed only with E greater at least by a factor of thousand, but we do not believe that the electric field is so higher with respect to our calculation/simulation

MC simulations to evaluate MCS

8000

6000

4000

2000

MC simulation of O @ 400 MeV/u (GSI2021)

0.5

X[cm]

-0.5

- the MC simulations never succeed to reproduce ulletthe grid correctly: we can see the effect, but it is not enhanced as in data
- Grid effect mainly due to MCS
- MC simulation missing evts in hole ~ 20%

VTX data missing evts in hole ~ 50%

- 200 MeV with high beam rate (run 7064, BM HV @ 2070). Unfortunately, the number of events with a low majority rate is negligible
- BM wire grid seems to be present in VTX cluster map with protons @ 200 MeV at low beam rate (and without emulsions)

The beam profile reconstructed by the VTX does not show the wire shadow in the emulsion runs with protons @

- to be present in the VTX beam profile (the BM HV was at 1975V)
- The effect seems to be not present, regardless of the instantaneous beam rate (majority rate)

Also in CNAO2023, during the emulsion irradiation with protons at 70 MeV, the bm wire grid doesn't seems

Still an open question

Apparently the effect seems to be linked to the HV and the beam rate

- The BM shadow disappeared when HV is off with 12C @ 200 MeV/u, at low beam rate. However, the test has been conducted as a last minute test varying different parameters. We should repeat the test changing only the BM HV
- Also in some proton runs, the BM shadow seems to disappear when the overall beam rate is very high
- MCS ruled out
- Electric field calculation and simulations indicates that this is insufficient to justify the wire shadow
- At the moment we do not have an answer to the beam profile grid question

To do list

- Optimization of the BM track reconstruction parameters \bullet
- lacksquare
- Check possible effects due to other beam/detector properties \bullet
- Check space-charge effect \bullet

Check the wire shadow effect in the old data takings, particularly in the runs with a high beam rate