

ASFIN: Nuclear Astrophysics

Rosario Gianluca Pizzone UniCt & INFN LNS

Nuclear and Atomic input for quiescent burning

- Activities which may be performed as soon as the beam is delivered $@LNS$: stable beams
- Activities with Noble gas Tandem Source;
- Activities with Laser

Stable Beams:

Important physical cases can be studied with pre-upgrade accelerator conditions (e.g. Tandem): ANC + THM measurements: physical cases NeNaAl cycles, or C-burning (e.g. **12C+16O reaction**);

Noble gas sources: Potentially groundbreaking results may be achieved with Noble Gas Tandem Source, e.g. **16O +16O fusion** Via THM after ^{20,22}Ne breakup with similar methodology of ¹²C+¹²C studies.

Tandem beams are very much needed for our research \rightarrow back-log exps.

All those activities included in LNS MIDTERM paper as well as NUPECC LRP

Explosive nucleosynthesis

- BBN nucleosynthesis studied via Noble gas Tandem Source;
- BBN nucleosynthesis studied via Laser *induced plasma*
- Long-lived isotopes induced reactions at Tandem (batch mode)

Long-lived isotopes induced reactions at Tandem: e.g. $^{26}Al_{GS}(n,\alpha)$, $(n,p)(p,\gamma)$ while metastable state to be *investigated at LNL – SPES*

s and r process

- S-process reactions studied at Tandem;
- R-process nucleosynthesis investigation with Polyfemo detector.
- *S process reactions may be investigated via indirect methods;*
- *R-process nucleosynthesis studied with Polyfemo.*

All those activities included in LNS MIDTERM paper as well as NUPECC LRP

case1: The $^{11}C(\alpha, p)^{14}N$ cross section measurement

Models suggest that the 7Li/11B abundance ratio may reflect the information on the **neutrino mass hierarchy, "normal" or "inverted"** (Yoshida 2006, Mathews+ 2012).

Latest calculation (Kajino, Kusakabe, Yao) shows that much ¹¹C is produced in the v-process and affects the **final 11B abundance**. We need **a precise knowledge of the nuclear reactions around 11C.**

> **¹¹C(** α **,p)¹⁴N** has a large uncertainty and possibly the most effective to the A=11 abundance among 91 reactions (Yao et al., NIC proceeding, 2022).

The present knowledge of the ¹¹C(α , p)¹⁴N S-factor is summarized in figure:

¹⁵O excited levels (E_x =10.290-11.218 MeV) contribute to the cross section at Gamow energies.

5 resonances are known to exist below the direct measurement data points. a widths are unknown and thus produce a **large uncertainty** (shaded area in the figure) **at the Gamow window (~0.25-1.1 MeV)**.

Hayakawa et al. 2016 found a **dominance of the** p_0 **channel** with respect excited states.

Because of low cross section values (ν nb), we aim at explore this low-energy region by using the **Trojan Horse Method (THM) for studying the reverse** $^{14}N(p,\alpha)^{11}C$ **reaction.**

Case 2: ²²Ne(a,n)²⁵Mg v Magn-a: ²⁵Mg(n,a)²²Ne +

 \det bal.princ. \rightarrow $d(^{25}Mg,no)^{22}Ne THM$ (not worked, 23Na instead of 22Ne)

• **22Ne beam by the (NobleElementsSource) + Tandem** à **6Li(22Ne,dn)25Mg THM + solid 6LiF targets (6Li= α+d) or other break-ups**

Below 1.2 MeV values are smaller than $1 \mu b$ \rightarrow very difficult to perform direct measurements Indirect measurement is needed @low energy to cover the whole range and solve the discrepancy

LNS & the future of Nuclear Astrophysics:

- Up-to-date detector array \rightarrow NEFASTA
- Radioactive ion source for long lived isotopes on the Tandem;
- Noble gas source for the Tandem;
- Laser induced measurements in plasma- Coulomb Explosion;

Necessity of a resident detector array for measurements @LNS Tandem –> dedicated facilities (dedicated testing and developing point)

The *Nuclear Physics Mid Term Plan in Italy – LNS Session* **14N(p,α) 11C reaction via THM applied to the QF 2H(14N,α11C)n**

- The two body reaction $14N(p,α)$ ¹¹C
- **(Q=-2.922 MeV)** will be studied by applying the THM to the reaction **2H(14N,α11C)n (Q-value=-5.146 MeV)** by properly selecting the corresponding quasi-free contribution (QF) to the total reaction yield;
- 1) Deuteron "d" is used as **THnucleus;**
- 2) A 80 MeV 14N is required 3) 11C detection via telescopes T₁ and \triangleright At lower angles (\sim 3°), maximum elastic coth contribution at \sim 1.5 KHz with 109 pps;

1) $E_x = 10.290$ MeV, $\Gamma = 3 \pm 1$ keV 2) $E_x = 10.300$ MeV, $\Gamma = 11 \pm 2$ keV 3) $E_x = 10.461$ MeV, Γ <2 keV 4) E_x= 10.480 MeV, Γ =25±5 keV 5) E_x= 10.506 MeV, Γ =140±40 keV 6) $E_x = 10.917$ MeV, $\Gamma = 90$ keV 7) $E_x = 10.938$ MeV, $\Gamma = 99 \pm 5$ keV 8) $E_x = 11.025$ MeV, $\Gamma = 25 \pm 2$ keV 9) $E_x = 11.151$ MeV, Γ <10 keV 10) E_x= 11.218 MeV, Γ =40±4 keV

Nuclear Physics

Case 2: 22Ne(α,n)25Mg Astrophysical scenario

- neutron source that feeds the s-process **weak component** (60<A<90) during central-4He/shell-12C burning stage in massive stars
- most intense n-source in AGB stars (provides n fluxes during thermal pulses up to 10^{10} n/cm³) allowing competition between n-capture and β -decay \rightarrow ⁸⁶Kr, ⁸⁷Rb and ⁹⁶Zr not only synthetized by r-process (and 86Sr is s-only nucleus)
- **type II** supernova explosions [Longland et al.]
- 60Fe is mainly produced in massive stars by neutron captures during convective C-shell burning \rightarrow its abundance depends strongly on

the $22Ne+\alpha$ rates.

• **type Ia** supernovae [Piro and Bildsten et al.

"simmering" stage (1000 years prior to the explosion) n from $2^2Ne(\alpha,n)^{25}Mg$ affect Cabundance, thus altering the amount of 56Ni produced (i.e., the **peak luminosity**) in the explosion.

[Timmes et al.]

during the explosion, n from $22Ne(\alpha,n)^{25}Mg$ affect the electron mole fraction, Ye \rightarrow influencing the nature of the explosion.

Nuclear Physics Mid Term Plan in Italy – LNS Session [Courtesy of Dr. S. Palmerini]

The *Nuclear Physics Mid Term Plan in Italy – LNS Session* **14N(p,α) 11C reaction via THM applied to the QF**

 24.24 **11** \bullet **11** $14N(p,α)$ ¹¹C **(Q=-2.922 MeV)** will be studied by applying the THM to the reaction **2H(14N,α11C)n (Q-value=-5.146 MeV)** by properly selecting the corresponding quasi-free contribution (QF) to the total reaction yield;

- 1) Deuteron "d" is used as **THnucleus;**
- 2) A 80 MeV 14N is required 3) 11C detection via telescopes T₁ and ተ''
| 2 coth contribution at \sim 1.5 KHz with 109 pps;

² We explore the energy region in which **15O excited levels** influencing the ${}^{11}C(\alpha,p){}^{14}N$ cross section are populated $(E_x=10.290-$ 11.218 MeV) at QF conditions. - We have a pixel definition of 1.6x1.6mm2 (32 strips DSSSD), an angular resolution of ~ 0.27 ° is expected

Nuclear Physics

 \rightarrow 40-60 keV's in E_c

ADONIS: Aluminum DestructiON in Stars

Measurement of the neutron-induced reaction cross sections in core-collapse supernovae

Four channels:

 26 Al(n,p)²⁶Mg gs and 1st excited

²⁶Al(n, α)²³Na gs and 1st excited

We use deuteron to transfer a neutron and induce the reaction of interest

We observe both the Mg and Na channels

Essentially no contamination in the beam (except $1/1000$ ²⁶Al isomeric state)