

ASFIN: Nuclear Astrophysics

Rosario Gianluca Pizzone UniCt & INFN LNS

Nuclear and Atomic input for quiescent burning

- Activities which may be performed as soon as the beam is delivered @LNS: stable beams
- Activities with Noble gas Tandem Source;
- Activities with Laser

Stable Beams:

Important physical cases can be studied with pre-upgrade accelerator conditions (e.g. Tandem): ANC + THM measurements: physical cases NeNaAl cycles, or C-burning (e.g. ¹²C+¹⁶O reaction);

Noble gas sources: Potentially groundbreaking results may be achieved with Noble Gas Tandem Source, e.g. ${}^{16}O + {}^{16}O$ fusion Via THM after ${}^{20,22}Ne$ breakup with similar methodology of ${}^{12}C + {}^{12}C$ studies.

Tandem beams are very much needed for our research \rightarrow back-log exps.

All those activities included in LNS MIDTERM paper as well as NUPECC LRP

Explosive nucleosynthesis

- BBN nucleosynthesis studied via Noble gas Tandem Source;
- BBN nucleosynthesis studied via Laser induced plasma
- Long-lived isotopes induced reactions at Tandem (batch mode)

Long-lived isotopes induced reactions at Tandem: e.g. ${}^{26}Al_{GS}(n,\alpha)$, (n,p) (p,γ) while metastable state to be investigated at LNL – SPES

s and r process

- S-process reactions studied at Tandem;
- R-process nucleosynthesis investigation with Polyfemo detector.
- S process reactions may be investigated via indirect methods;
- *R*-process nucleosynthesis studied with Polyfemo.

All those activities included in LNS MIDTERM paper as well as NUPECC LRP

case1: The ${}^{11}C(\alpha,p){}^{14}N$ cross section measurement

Models suggest that the ⁷Li/¹¹B abundance ratio may reflect the information on the *neutrino mass hierarchy, "normal" or "inverted"* (Yoshida 2006, Mathews+ 2012).

Latest calculation (Kajino, Kusakabe, Yao) shows that much ¹¹C is produced in the v-process and affects the **final** ¹¹B abundance. We need a precise knowledge of the nuclear reactions around ¹¹C.

 $^{11}C(\alpha,p)^{14}N$ has a large uncertainty and possibly the most effective to the A=11 abundance among 91 reactions (Yao et al., NIC proceeding, 2022).

The present knowledge of the ${}^{11}C(\alpha,p){}^{14}N$ S-factor is summarized in figure:

 ^{15}O excited levels (Ex=10.290-11.218 MeV) contribute to the cross section at Gamow energies.

5 resonances are known to exist below the direct measurement data points. α widths are unknown and thus produce a **large uncertainty** (shaded area in the figure) **at the Gamow window (~0.25-1.1 MeV)**.

Hayakawa et al. 2016 found a **dominance of the p_o channel** with respect excited states.

Because of low cross section values (~nb), we aim at explore this low-energy region by using the **Trojan Horse Method (THM) for studying the reverse** ${}^{14}N(p,\alpha){}^{11}C$ reaction.

Case 2: ²²Ne(a,n)²⁵Mg

 ✓ Magn-a: ²⁵Mg(n,α)²²Ne + det.bal.princ. → d(²⁵Mg,nα)²²Ne THM (not worked, 23Na instead of 22Ne)

 ²²Ne beam by the (NobleElementsSource) + Tandem →
 ⁶Li(²²Ne,dn)²⁵Mg THM + solid ⁶LiF targets (⁶Li= α+d) or other break-ups

Below 1.2 MeV values are smaller than 1 μ b \rightarrow very difficult to perform direct measurements Indirect measurement is needed @low energy to cover the whole range and solve the discrepancy

LNS & the future of Nuclear Astrophysics:

- Up-to-date detector array \rightarrow NEFASTA
- Radioactive ion source for long lived isotopes on the Tandem;
- Noble gas source for the Tandem;
- Laser induced measurements in plasma- Coulomb Explosion;

Necessity of a resident detector array for measurements @LNS Tandem –> dedicated facilities (dedicated testing and developing point)

The ¹⁴N(p,α) ¹¹C reaction via THM applied to the QF ²H(¹⁴N,α ¹¹C)n

- The two body reaction ¹⁴N(p,α)¹¹C
- (Q=-2.922 MeV) will be studied by applying the THM to the reaction
 ²H(¹⁴N,α¹¹C)n (Q-value=-5.146
 MeV) by properly selecting the corresponding quasi-free contribution
 (QF) to the total reaction yield;
 1) Deuteron "d" is used as TH-

nucleus;

2) A 80 MeV ¹⁴N is required At lower angles (~ 3°), maximum elastic 3) ¹¹C detection via telescopes T and contribution at ~1.5 KHz with 10⁹ pps;

1) E_x= 10.290 MeV, Γ=3±1 keV
 2) E_x= 10.300 MeV, Γ=11±2 keV
 3) E_x= 10.461 MeV, Γ<2 keV
 4) E_x= 10.480 MeV, Γ=25±5 keV
 5) E_x= 10.506 MeV, Γ=140±40 keV
 6) E_x= 10.917 MeV, Γ=90 keV
 7) E_x= 10.938 MeV, Γ=99±5 keV
 8) E_x= 11.025 MeV, Γ=25±2 keV
 9) E_x= 11.151 MeV, Γ<10 keV
 10) E_x= 11.218 MeV, Γ=40±4 keV

Nuclear Physics

Case 2: ²²Ne(a,n)²⁵Mg Astrophysical scenario

- neutron source that feeds the s-process
 weak component (60<A<90) during
 central-⁴He/shell-¹²C burning stage in
 massive stars
- most intense n-source in AGB stars (provides n fluxes during thermal pulses up to 10¹⁰ n/cm³) allowing competition between n-capture and β-decay → ⁸⁶Kr, ⁸⁷Rb and ⁹⁶Zr not only synthetized by r-process (and ⁸⁶Sr is s-only nucleus)
- **type II** supernova explosions [Longland et al.]
- ⁶⁰Fe is mainly produced in massive stars by neutron captures during convective C-shell burning \rightarrow its abundance depends strongly on

the ²²Ne+ α rates.

type Ia supernovae
 [Piro and Bildsten et al.]

"simmering" stage (1000 years prior to the explosion) n from ²²Ne(α ,n)²⁵Mg affect Cabundance, thus altering the amount of ⁵⁶Ni produced (i.e., the **peak luminosity**) in the explosion.

[Timmes et al.]

during the explosion, n from ²²Ne(α ,n)²⁵Mg affect the electron mole fraction, Ye \rightarrow influencing the nature of the explosion.

[Courtesy of Dr. S.

Palmerini]

Inc -- INCD, CO -- C reaction via Innvia D Difect Maled Lays May et a Plan in Italy - LNS Session

¹**1)CThe**two body reaction ¹⁴N(p,α)¹¹C

(Q=-2.922 MeV) will be studied by applying the THM to the reaction
²H(¹⁴N,α¹¹C)n (Q-value=-5.146)
MeV) by properly selecting the corresponding quasi-free contribution
(QF) to the total reaction yield;
1) Deuteron "d" is used as TH-

nucleus;

2) A 80 MeV ¹⁴N is required At lower angles ($\sim 3^{\circ}$), maximum elastic 3) ¹¹C detection via telescopes T and contribution at ~1.5 KHz with 10⁹ pps;

² - We explore the energy region in which ¹⁵O excited levels influencing the ¹¹C(α,p)¹⁴N cross section are populated (E_x=10.290-11.218 MeV) at QF conditions.
- We have a pixel definition of 1.6x1.6mm² (32 strips DSSSD), an angular resolution of ~0.27° is expected

Nuclear Physics

^{→ 40-60} keV's in E

ADONIS: Aluminum Destruction in Stars

Measurement of the neutron-induced reaction cross sections in core-collapse supernovae

Four channels:

 26 Al(n,p) 26 Mg gs and 1st excited

²⁶Al(n,α)²³Na gs and 1st excited

We use deuteron to transfer a neutron and induce the reaction of interest

We observe both the Mg and Na channels

Essentially no contamination in the beam (except 1/1000 ²⁶Al isomeric state)