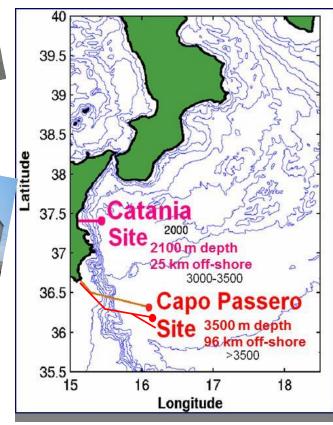
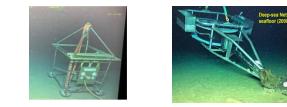

INFN-LNS: Astroparticle Physics Group (CSN2)


INFN-LNS: Marine infrastructure in Eastern Sicily



Both shore labs have direct 10Gbit connection to the EU optical network infrastructure for research

Catania (2100 m water depth) EMSO-ERIC, FOCUS-ERC, IPANEMA-ECCSEL-ERIC, VONGOLA-PNRR MELITE-NATO, PRIN-DIVES, Geoinquire-Horizon-EU 25 km-long electro-optical cable 10 fibers, 6 conductors divided among 2 CTFs (4 independent e.o. outputs)

Capo Passero (3500 m water depth) KM3NeT, EMSO-ERIC, LOWNOISER-Horizon-EU

100 km-long electro-optical cable 20 fibers, 1 conductor (DC)Cable Termination (5 independent e.o. outputs)100 km-long electro-optical cable 48 fibers, 2 conductors (DC)Cable Termination (16 independent optical and electrical outputs)

30/09/2024

2

INFN-LNS: Marine infrastructure East Sicily

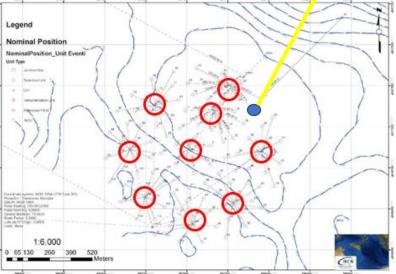
5 electro-optical ports in CTF 1

16 electro-optical ports in CTF 2

deep-sea infrastructures and observatories offer unprecedented tools to


- develop and test novel marine technologies and detectors
- monitor geophysics and biological phenomena and anthropic footprint

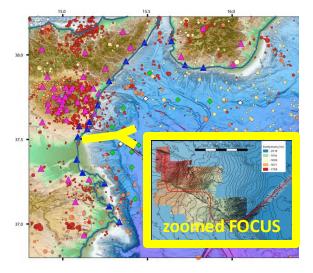
G. Riccobene INFN-LNS


The Capo Passero site

30/09/2024

9 JBs: 12/14 electro-optical ports per JB

Real-time marine data harvesting

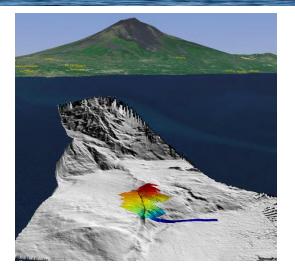


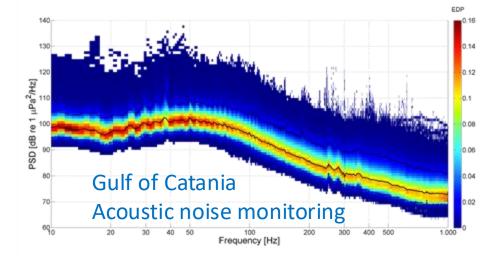
Hydrophone Phased arrays and Optical fiber-based acoustic sensors

Marine spatial planning

Anthropogenic (shipping, airguns, ...) noise monitoring Presence of Cetaceans Geophysical Noise monitoring Wind/rain (noise) monitoring offshore

Geophysics and Volcanology, studies and real time alert Surveillance and Marine Planning





Geo-IN UIRE

European Research Council Established by the European Commission

30/09/2024

... Towards deep sea exploration and colonisation

ASTROBIOLOGY Volume 20, Number 7, 2020 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2019.2129

Review Articl

Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies

J. Aguzzi,^{1,2} M.M. Flexas,³ S. Flögel,⁴ C. Lo Iacono,^{1,5} M. Tangherlini,² C. Costa,⁶ S. Marini,^{2,7} N. Bahamon,^{1,7}
S. Martini,⁸ E. Fanelli,^{2,9} R. Danovaro,^{2,9} S. Stefanni,² L. Thomsen,¹⁰ G. Riccobene,¹¹ M. Hildebrandt,¹²
I. Masmitja,¹³ J. Del Rio,¹³ E.B. Clark,¹⁴ A. Branch,¹⁴ P. Weiss,¹⁵ A.T. Klesh,¹⁴ and M.P. Schodlok¹⁴

Cite This: Environ. Sci. Technol. 2019, 53, 6616–6631

Critical Review pubs.acs.org/est

New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems

Jacopo Aguzzi,^{*,†}[●] Damianos Chatzievangelou,[‡] Simone Marini,[§] Emanuela Fanelli,^{||} Roberto Danovaro,^{||,⊥} Sascha Flögel,[#] Nadine Lebris,[▽] Francis Juanes,[●] Fabio C. De Leo,^{●,○} Joaquin Del Rio,[¶] Laurenz Thomsen,[‡] Corrado Costa,[⊗] Giorgio Riccobene,[▲] Cristian Tamburini,^Δ Dominique Lefevre,^Δ Carl Gojak,[♦] Pierre-Marie Poulain,[◊] Paolo Favali,^{£,∞} Annalisa Griffa,[§] Autun Purser,[■] Danelle Cline,[□] Duane Edgington,[□] Joan Navarro,[†] Sergio Stefanni,[⊥] Steve D'Hondt,[★] Imants G. Priede,^{★,@} Rodney Rountree,^{●,∀} and Joan B. Company[†]

30/09/2024

5