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“Probability is good sense reduced to a calculus” (Laplace)
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Doing Physics [Science in general]

Task of physicists:

Describe/understand the physical world

⇒ inference of laws and their parameters

Predict observations

⇒ forecasting
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Doing Physics [Science in general]

Process

neither automatic

nor purely contemplative

→ ‘scientific method’

→ planned experiments (‘actions’)⇒ decision.
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Doing Physics [Science in general]

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameters (and/or the theory itself)

2. Even if we were sure about theory and parameters,
there could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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Inferential-predictive process
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Inferential-predictive process

(S. Raman, Science with a smile)
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Inferential-predictive process

(S. Raman, Science with a smile)

Even if the (ad hoc) model fits perfectly the data,
we do not believe the predictions
because we don’t trust the model!

[Many ‘good’ models are ad hoc models!]
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2011 IgNobel prize in Mathematics

D. Martin of USA (who predicted the world would end in
1954)

P. Robertson of USA (who predicted the world would
end in 1982)

E. Clare Prophet of the USA (who predicted the world
would end in 1990)

L.J. Rim of KOREA (who predicted the world would end
in 1992)

C. Mwerinde of UGANDA (who predicted the world
would end in 1999)

H. Camping of the USA (who predicted the world would
end on September 6, 1994 and later predicted that the
world will end on October 21, 2011)
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2011 IgNobel prize in Mathematics

“For teaching the world to be
careful when making
mathematical assumptions
and calculations”

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 4



Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations

=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact
cause that has produced it.
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact
cause that has produced it.

E2 ⇒ {C1, C2, C3}?

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 6



The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all for their scientific
applications.
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all for their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all for their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.

I play with a gentleman whom I do not know. He has
dealt ten times, and he has turned the king up six times.
What is the chance that he is a sharper? This is a
problem in the probability of causes. It may be said that
it is the essential problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of
causes, and are most interesting of all for their scientific
applications. I play at écarté with a gentleman whom I
know to be perfectly honest. What is the chance that he
turns up the king? It is 1/8. This is a problem of the
probability of effects.

I play with a gentleman whom I do not know. He has
dealt ten times, and he has turned the king up six times.
What is the chance that he is a sharper? This is a
problem in the probability of causes. It may be said that
it is the essential problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)

Why physics students are not taught how
to tackle this kind of problems?
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind

P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)

P (172 ≤ mtop/GeV ≤ 174) ≈ 70%

P (MH < 125GeV) > P (MH > 125GeV)
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind

P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)

P (172 ≤ mtop/GeV ≤ 174) ≈ 70%

P (MH < 125GeV) > P (MH > 125GeV)

. . . although, such statements are considered
blaspheme to statistics gurus

[The fact that for several people in this audience
this criticism is misterious is a clear indication
of the confusion concerning this matter]
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us
from doing Science (in the sense of Natural Science
and not just Mathematics)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us
from doing Science (in the sense of Natural Science
and not just Mathematics)

Indeed

“It is scientific only to say what is more
likely and what is less likely” (Feynman)

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 9



From ‘true value’ to observations

x

Μ0

Experimental

response

?

Given µ (exactly known) we are uncertain about x
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From ‘true value’ to observations

x

Μ

Uncertain Μ

Experimental

response

?

Uncertainty about µ makes us more uncertain about x
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 11



. . . and back: Inferring a true value

x

Μ

Which Μ?

Experimental

observation

x0

?

Where does the observed value of x comes from?
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. . . and back: Inferring a true value

x

Μ

x0

?

Inference

We are now uncertain about µ, given x.
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A very simple experiment

Let’s make an experiment
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Let’s make an experiment

Here
Now
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A very simple experiment

Let’s make an experiment

Here
Now

For simplicity

µ can assume only six possibilities:

0,1, . . . ,5

x is binary:

0,1

[ (1, 2); Black/White; Yes/Not; . . . ]
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A very simple experiment

Let’s make an experiment

Here
Now

For simplicity

µ can assume only six possibilities:

0,1, . . . ,5

x is binary:

0,1

[ (1, 2); Black/White; Yes/Not; . . . ]

⇒ Later we shall make µ continous.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 12



Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several events,
the most important of which correspond to the following
questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will
we observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainties: ∪5j=0 Hj = Ω

∪2i=1Ei = Ω .
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?

And after a sequence of extractions?

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 13



The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
record its color and reintroducing in the box

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 14



The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
record its color and reintroducing in the box

This toy experiment is conceptually very close to what we
do in Physics

⇒ try to guess what we cannot see (the electron mass, a
branching ratio, etc)

. . . from what we can see (somehow) with our senses.
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The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
record its color and reintroducing in the box

This toy experiment is conceptually very close to what we
do in Physics

⇒ try to guess what we cannot see (the electron mass, a
branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch
inside the box! (As we cannot whatch a real movie showing
the beginning of the Universe and compare it with our
speculations.)
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

Where is the probability?
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of a future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

Where is the probability?

Certainly not in the box!

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 15



Subjective nature of probability

“Since the knowledge may be different with
different persons
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”
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at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”

(Schrödinger, 1947)
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of
information of the subject who evaluates it.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 16



Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

(Schrödinger, 1947)

P (E) −→ P (E | Is)

where Is is the information available to subject s.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

(Schrödinger, 1947)

P (E) −→ P (E | Is)

where Is is the information available to subject s.

⇒ Three box game

(Box with white ball wins)

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 17



What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . .
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

(Schrödinger, 1947)
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

⇒ How much we believe something

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 18



What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

→ ‘Degree of belief’←
G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 18



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!
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How to force people to assess how much they are
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somebody else will choose the direction of the bet.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 19



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)

→ P (3477 ≤MSun/MSat ≤ 3547 | I(Laplace)) = 99.99%
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

NO!
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

It does not imply one has to be 95% confident on
something!
If you do so you are going to make a bad bet!

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 19



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

For more on the subject
see http://arxiv.org/abs/1112.3620

and references therein.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 19
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Unifying role of subjective probability

Wide range of applicability

Probability statements all have the same meaning no
matter to what they refer and how the number has been
evaluated.

P (Rain next Saturday in Paris) = 68%

P (Germany wins European soccer cup) = 68%

P (MH ≤ 130GeV) = 68%

P (Free neutron decays before 17 s) = 68%

P (White ball from a box with 68W+32B) = 68%
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Unifying role of subjective probability

Wide range of applicability

Probability statements all have the same meaning no
matter to what they refer and how the number has been
evaluated.

P (Rain next Saturday in Paris) = 68%

P (Germany wins European soccer cup) = 68%

P (MH ≤ 130GeV) = 68%

P (Free neutron decays before 17 s) = 68%

P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence
on something.
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Unifying role of subjective probability

Wide range of applicability

Probability statements all have the same meaning no
matter to what they refer and how the number has been
evaluated.

P (Rain next Saturday in Paris) = 68%

P (Germany wins European soccer cup) = 68%

P (MH ≤ 130GeV) = 68%

P (Free neutron decays before 17 s) = 68%

P (White ball from a box with 68W+32B) = 68%

You might agree or disagree, but at least You know what
this person has in his mind. (NOT TRUE with “C.L.’s”!)
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Unifying role of subjective probability

Wide range of applicability

Probability statements all have the same meaning no
matter to what they refer and how the number has been
evaluated.

P (Rain next Saturday in Paris) = 68%

P (Germany wins European soccer cup) = 68%

P (MH ≤ 130GeV) = 68%

P (Free neutron decays before 17 s) = 68%

P (White ball from a box with 68W+32B) = 68%

You might agree or disagree, but at least You know what
this person has in his mind. (NOT TRUE with “C.L.’s”!)

If a person has these beliefs and he/she has the
chance to win a rich prize bound to one of these events,
he/she is indifferent to the choice.
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Unifying role of subjective probability

Wide range of applicability

Probability statements all have the same meaning no
matter to what they refer and how the number has been
evaluated.

P (Rain next Saturday in Paris) = 68%

P (Germany wins European soccer cup) = 68%

P (MH ≤ 130GeV) = 68%

P (Free neutron decays before 17 s) = 68%

P (White ball from a box with 68W+32B) = 68%

We can talk very naturally about
probabilities of true values!

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 20



Probability Vs “probability”. . .

Errors on ratios of small numbers of events
F. James(∗) and M. Roos

Nucl. Phys. B172 (1980) 475
(http://ccdb4fs.kek.jp/cgi-bin/img_index?8101205)

(∗) Influential CERN ’frequentistic guru’ of HEP community

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 21
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Mathematics of beliefs

The good news:

The basic laws of degrees of belief
are the same we get from the
inventory of favorable and possible
cases, or from events occurred in the
past.
[ Details skipped. . . ]

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 22



Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care of ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care of ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!

(Liberated by a curious ideology that forbits its use)

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 24



A simple, powerful formula
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A simple, powerful formula

P (A |B | I)P (B | I) = P (B |A, I)P (A | I)
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A simple, powerful formula

Take the courage to use it!
G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 25



A simple, powerful formula

It’s easy if you try. . . !
G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 25



Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given
that event}.

P (Ci |E) ∝ P (E |Ci)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given
that event}. The probability of the existence of any one of
these causes {given the event} is thus a fraction whose
numerator is the probability of the event given the cause,
and whose denominator is the sum of similar probabilities,
summed over all causes.

P (Ci |E) =
P (E |Ci)∑
j P (E |Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any
one of a number of causes to which that event may be
attributed, the greater the likelihood of that cause {given that
event}. The probability of the existence of any one of these
causes {given the event} is thus a fraction whose numerator
is the probability of the event given the cause, and whose
denominator is the sum of similar probabilities, summed
over all causes. If the various causes are not equally
probable a priory, it is necessary, instead of the probability
of the event given each cause, to use the product of this
probability and the possibility of the cause itself.”

P (Ci |E) =
P (E |Ci)P (Ci)∑
j P (E |Cj)P (Cj)
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Laplace’s “Bayes Theorem”

P (Ci |E) =
P (E |Ci)P (Ci)∑
j P (E |Cj)P (Cj)

“This is the fundamental principle (*) of that
branch of the analysis of chance that consists of
reasoning a posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the

‘fondamental rules’.
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Laplace’s “Bayes Theorem”

P (Ci |E) =
P (E |Ci)P (Ci)∑
j P (E |Cj)P (Cj)

“This is the fundamental principle (*) of that
branch of the analysis of chance that consists of
reasoning a posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the

‘fondamental rules’.

Note: denominator is just a normalization factor.

⇒ P (Ci |E) ∝ P (E |Ci)P (Ci)

Most convenient way to remember Bayes theorem

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 27



Cause-effect representation

box content→ observed color
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Cause-effect representation

box content→ observed color

An effect might be the cause of another effect =⇒

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 28



A network of causes and effects

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 29



A network of causes and effects

and so on. . . ⇒ Physics applications

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 29



Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

Inferring Hj is the same as inferring the proportion of

white balls:

Hj ←→ j ←→ p =
j

5
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

Inferring Hj is the same as inferring the proportion of

white balls:

Hj ←→ j ←→ p =
j

5

Increase the number of balls

n : 6→∞

⇒ p continous in [0, 1]
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

Inferring Hj is the same as inferring the proportion of

white balls:

Hj ←→ j ←→ p =
j

5

Increase the number of balls

n : 6→∞

⇒ p continous in [0, 1]

Generalize White/Black −→ Success/Failure

⇒ efficiencies, branching ratios, . . .

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 30



Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .
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Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

⇒ In the light of the experimental information
there will be values of p we shall believe more,
and others we shall believe less.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 31



Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P (pi |O1, O2, . . .) P (pi |X,n)

f(p |O1, O2, . . .) f(p |X,n)
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P (pi |O1, O2, . . .) P (pi |X,n)

f(p |O1, O2, . . .) f(p |X,n)

∝ f(O1, O2, . . . | p) · f0(p) ∝ f(X |n, p) · f0(p)
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P (pi |O1, O2, . . .) P (pi |X,n)

f(p |O1, O2, . . .) f(p |X,n)

Are the two inferences the same?
(not obvious in principle)

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 31



Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

E1 = White

E2 = Black

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 32



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
We can rewrite it as
P (Ei | I) =

∑
j P (Ei |Hj , I) · P (Hj | I)
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We are ready

Now that we have set up our formalism, let’s play a little

analyse real data

some simulations

Then

Hj ←→ j ←→ pj

extending p to a continuum:

⇒ Bayes’ billiard

(prototype for all questions related to efficiencies,
branching ratios)
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Bayes’ billiard

This is the original problem in the theory of chances solved
by Thomas Bayes in late ’700:

imagine you roll a ball at random on a billiard;

you mark the relative position of the ball along the
billiard’s length (l/L) and remove the ball

then you roll at random other balls

write down if it stopped left or right of the first ball;

remove it and go on with n balls.

Somebody has to guess the position of the first ball
knowing only how mane balls stopped left and how
many stoppe right

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 35



Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success, then

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)

f(p |x, n) ∝ px(1− p)(n−x) [x = #S]

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 36



Conclusions

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)
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Conclusions

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)

It is very close to the natural way of reasoning of
phycisists (as well as of everybody else).

Its consistent application in small-complex problems
was prohibitive many years ago.

But it is now possible thank to progresses in applied
mathematics and computation.

It makes little sense to stick to old ‘ah hoc’ methods that
had their raison d’être in the computational barrier.
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Conclusions

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)

It is very close to the natural way of reasoning of
phycisists (as well as of everybody else).

Its consistent application in small-complex problems
was prohibitive many years ago.

But it is now possible thank to progresses in applied
mathematics and computation.

It makes little sense to stick to old ‘ah hoc’ methods that
had their raison d’être in the computational barrier.

Mistrust all results that sound as ‘confidence’,
’probability’ etc about physics quantities, if they are
obtained by methods that do not contemplate ’beliefs’.

G. D’Agostini, Playfull Bayesian Intro (Vulcano, 28 May 2012) – p. 37
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