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Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. ’ Galaxies, Planets, etc.

Inflation

Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years




Expanding Universe (Friedmann, Lemaitre, Hubble)

Uniform isotropic universe, Einstein equation

Adiabatic expansion:
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Flat universe, k=0, unfinit universe, a — scale factor
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Small t - beginning:

Large t — exponential expansion at non-zero cosmological constant:
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Hot Universe (Gamow, Penzias and Wilson)
Inflation

Early stages:
Exponential expansion (large Lambda term, “excited vacuum”, scalar

field),
Inflation — decay of the “excited vacuum™ or scalar field,

Stage of Friedmann expansion.

Non-zero Lambda term (much smaller), transition from Friedmann
expansion to exponential expansion stage.



For discovery of the expansion law of the present universe
we need independent measurements of the velocity and distance to
very remote objects (galaxies, quasars, galaxy clusters)

Supernovae la — thermonuclear explosion SN — are used for these
purposes, due to possibility to find its total luminosity by
measurements of its light curve (type of a standard candle)



SN Ia

Composite X-ray and infrared image of the SN 1572 (Tycho’s
SN) remnant as seen by Chandra X-Ray Observatory, Spitzer
Space Telescope, and Calar Alto Observatory



SN Ia

A false-color composite (HST/SIRTF) image of the
supernova remnant nebula from SN 1604 (Kepler SN).



SN Ia,
Riess, A. G. + 19 authors

Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant (10 SNIa, 0.16 <=z <=0.62)

The Astronomical Journal, Vol. 116, Issue 3, pp. 1009-1038 (1998)
Schmidt, B. P.

The Astrophysical Journal, Vol. 507: pp.46-63, 1998 November 1

(>30 SNIa, 0.35 <=z2<=0.9)
Omega M=0.4"+0.5 -0.4, Omega Lambda=0.6"+0.4 -0.5

Unless supernovae are much different at high redshifts, the imperfection
of SNe Ia as distance indicators will have a negligible impact on using
SNe Ia as cosmological probes.



Perlmutter, S. + 23 authors (The Supernova Cosmology Project)

Measurements of the Cosmological Parameters Omega and
Lambda from the First Seven Supernovae at Z >= (.35

Astrophysical Journal v.483, pp.565-581 (1997)

For a spatially flat universe (Omega M + Omega Lamda = 1), we find Omega {M}
=0.94"{+0.34} {-0.28} or, equivalently, a measurement of the cosmological constant,
Omega { Lamda }=0.06"{+0.28} {-0.34}

Perlmutter, S. + 32 authors (The Supernova Cosmology Project)

Measurements of Omega and Lambda from 42 High-Redshift
Suprnovae (redshifts between 0.18 and 0.83)

The Astrophysical Journal, Volume 517, Issue 2, pp. 565-586 (1999)
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Measurements of Cosmic Microwave Background fluctuations
Satellites: Relikt, COBE, WMAP (2001), Planck (2006)
Baloons: Boomegang, Maxima, CBI, ACBAR, ...

Hot Universe, flat model, QO =1

Dark energy (A —term) () =0.7, Dark matter
(nonbarionic) () =0.26, Baryonic () =0.04

Equilibrium Planck radiation with temperature about 3 K
was left as a result of expansion of the hot universe (n, gravitons).

Matter had separated from the radiation at redshift Z about 1000.
Radiation preserves non-uniformities of that period.
Study of CMB fluctuations permitted to evaluate the global
parameters of the universe:

() andits ingradients, H — Hubble “constant”,

determining the rate of the universe expansion around us:
V=Hr, H~70 km/s/Mpc






Planck (simulation)
M. Liguori et al., 2003



All perturbations are correlated, so to the
moment of recombination amplitudes
of harmonics oscillale — Doppler peaks

(Sakharov oscillations)
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Figure 10. Pnmordial helium abundance and the temperature power spectrum.
The data points are the same as those in Figure 7. The lower (pink) solid line
(which is the same as the solid line in Figure 7) shows the power spectrum with
the nominal helium abundance, ¥, = 0.24, while the upper (blue) solid line
shows that with a tiny helium abundance. ¥, = 0.01. The larger the helium
abundance 1s, the smaller the number density of electrons during recombination
becomes, which enhances the Silk damping of the power spectrum on small
angular scales, [ = 500.



In papers of A. Chernin:, Physics-Uspekhi, 44, 1099 (2001),
and Physics-Uspekhi, 51, 267 (2008), the question was raised
about a possible influence of the existence of the cosmological
constant on the properties of the Hubble flow in the local galaxy
cluster — close vicinity of our Galaxy. Basing on the observations
of Karachentsev et al. (2006), he concluded that the
presence of the the dark energy (DE) 1s responsible for the
formation of this Hubble flow.

The importance of the DE for the structure of the local galaxy
cluster (LC) depends on the level of the influence of DE on the
dynamic properties. In particular, it is necessary to check, if the
LC may exist in the equilibrium state, at present values of DE
density, and the LC densities of matter, consisting of the
baryonic, and dark matter (BM and DM).



ARA 541, A84 (2012)

A brief analysis of self-gravitating polytropic
models with a non-zero cosmological constant
(Research Note)

M. Merafina, G. S. Bisnovatyi-Kogan, and S. O. Tarasov

We investigate the equilibrium and stability of polytropic spheres
in the presence of a non-zero cosmological constant.

We solve the Newtonian gravitational equilibrium equation for a
system with a polytropic equation of state of the matter

P = Kp”y introducing a non-zero cosmological constant A.



Consider spherically symmetric equilibrium configuration in
newtonian gravity, in presence of DE, represented by the
cosmological constant \Lambda. In this case the gravitational force
F g in a spherically symmetric body is given by the formula
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The virial theorem
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Here m is written using the equilibrium equation (4). For the
adiabatic star with the polytropic equation of state we have
relations

oE=np, P=PE _pipv="H*lp y_1

1n n i

Here £ and I are thermal energy and enthalpy per gram,
and V is a specific volume. Aftersome transformations, we
obtain the following relations between the energies
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constant in the energy definition of £, i1s chosen so that ¢4 =0 at A =0, M =0, g4, =
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fo E dm. Let us make an additional transformation of the expression for s,. By partial

integration we obtain

n—3GM?* (n—3)A, _. 2n
T 5-n R 6(5 —n) " b—mn




Introduce non-dimensional polytropic variables
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Equilibrium solutions
At n = 1 the equation (7) is linear, and has an analytic solution. Following Chan-
drasekhar (1939), let us introduce a new wvariable y = &6,. After the substitution the
equation (7) 1s t1ansf01 ms into

At 7 =0 we have a well known analytic polytropic solution (Chandrasekhar, 1939)




satisfving the boundary conditions in the center #,(0) = 1, #{(0) = 0. At nonzero 3, the
solution satisfving the boundary conditions in the center is written as

sin &

§

The radius of the configuration is defined by the first zero of the solution (21), or (22). For

b= (1 - B)— + 3.

the Emden solution (21) the outer radius corresponds to &, = m, and for the solution of
(22) with DE, the radius of the configuration is determined by the transcendental equation

sin &yt

(1- ) +3=0. (23)

out

This equation has real solutions only at 3 < 3., so that at the outer boundary not only
61, but also 8] = 0 at 8 = 3,. It follows from (22)

cosé  sin §> (24)
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therefore the parameters 3, and &, . for the limiting equilibrium solution, for the polytropic
configuration with n = 1 in presence of DE is determined by the algebraic equations
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Some general relations

Equilibrium mass:
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For the limiting configuration with \beta=\beta ¢

df,,
gn(‘sout) = O? d§ |$out = 0.
3.£3 47 4
—"\"[n,lim = 47TPOQ'3‘ 30ut = ?'rout3."36p0c = ?routsﬁ me

so that the limiting value 3, is exactly equal to the ratio of the average matter density p,. of
the limiting configuration, to its central density pq.
Pe

.BC = .
Poe

(31)

For the Emden solution at 3 = 0 we have % = 3.290, 5.99, 54.18 forn =1, 1.5, 3



The equilibrium equation for this case is
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The mass of the configuration is written as
K1*7* . » [dbs Bes
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The Emden model at 7 = 0 has only one value of the mass, independent on the density
(neutral equilibrium configuration). At 3 # 0 the dependence on the density appears,

because the function 3 is different for different 3, and along the curve Mz(pg)|s the value
of 3 is Inversely proportional to pq.

The dependence M(\rho c), showing decreasing of mass with increase of the
central density, corresponds, for the adiabatic power equal to the polytropic one,
to a dynamically unstable configuration, according to the static criterium of
stability (Zeldovich, 1963). When the vacuum infuence 1s small, it 1s possible to
investigate the stability of the adiabatic configuration by the approximate
energetic method
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The equilibrium configuration is determined by the zero of the first derivative of
the energy over \rho c, and stable configuration has a positive second
derivative. It is more convenient to take derivatives over \rho c¢c"{1/3}, so we
have
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DE input in the stability of the configuration is negative, and similar to the fof the
general relativistic correction. Contrary, the presence of the dark matter, as a
background, has a positive influence, increasing the dynamic stability of the
configuration (McLaughlin and Fuller, 1996; Bisnovatyi-Kogan, 1998). The
adiabatic star with a polytropic power 4/3, which is in the state of a neutral
stability in the pure newtonian gravity, becomes unstable in presence of DE.
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Fig. 1. Non-dimensional mass M, of the equilibrium polytropic config-
urations at n = 1 as a function of the non-dimensional central density
po, for different values of Bi,. The cosmological constant A is the same
along each curve. The curves at Biy # 0 are limited by the configuration

with 8 = f..
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Fig. 2. The density distribution for configurations at n = 3 with g =
0, B = 0.58., and B = B.. The curves are marked with the values of £.
The non-physical solution at g = 1.58., which does not have an outer
boundary, is given by the dash-dot line. The non-physical parts of the
solutions at S < S, behind the outer boundary, are given by the dash
lines. The solutions asymptotically approach, at large &, the horizontal
line 65 = B'/3.
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Fig. 3. Same as in Fig. 1, forn = 3.
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Fig.4. Same as in Fig. 1, forn = 3/2.



Application to Local cluster (LC)

The question about the importance of DE to the dynamics of the Local Cluster (LC)
was raised by Chernin (2008). Presently accepted values of the DE density p v =
(0.72+0.03) x 10"{—29} g/cm”3, the mass of the Local Group, including its dark matter
input, 1s between MLC ~ 3.5 x 10"2 M solar, and ~ 1.3 x 10"12 M _solar. The radius
RLC was estimated by measuring the velocity dispersion v_t of galaxies in the LC, and
by the application of the virial theorem. The estimated velocity dispersion of galaxies in
the LC, which has been found to equal v_t =63 km s”—1, is very close to the value of
the local Hubble constant H = 68 km s”—1 Mpc”—1 (Karachentsev et al. 2006). The
similarity between these values indicates the great difficulties in dividing the measured
velocities between regular and chaotic components. The radius of the LC have values
between 1.5 Mpc and 4 Mpc. Chernin et al. (2009) identifies the radius RLC with the
radius R v of the zero-gravity force, which is i1dentical to the one corresponding to our
critical model with B =3 ¢, in which the average matter density is equal to 2p v: 1.2 <
M LC<3.7x 102 M solar, and 1.1 <R v < [.6Mpc. All these estimations show the
importance of the presently accepted value of DE density on the structure and dynamics
of the outer parts of LC, and its vicinity.



Astrophys Space Sci (2012) 338:337-343

Dark energy and key physical parameters of clusters of galaxies

G.S. Bisnovatyi-Kogan - A.D. Chernin

We study physics of clusters of galaxies embedded in the cosmic dark energy
background. Under the assumption that dark energy is described by the cosmological
constant, we show that the dynamical effects of dark energy are strong in clusters like
the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in
clusters are determined by dark energy:

(1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity
radius at which the dark matter gravity is balanced by the dark energy antigravity;

(2) the halo averaged density is equal to two densities of dark energy;

(3) the halo edge (cut-off) density is the dark energy density with a numerical factor
of the unity order slightly depending on the halo profile.
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The total force F' and the acceleration are both zero at the distance
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Here R _lambda 1s the zero-gravity radius

This radius 1s an absolute upper limit for the radial size R
of a static cluster:

Taking for an estimate the total mass of the Virgo cluster
(dark matter and baryons) M = (0.6—1.2) x 10*15 M_ solar and
the cosmological dark energy density p v, one finds the zero-gravity

radius of the Virgo cluster: R lambda= (9—11) Mpc.



Estimation of Lambda from the galaxy cluster parameters,
with zero gravity radius

The gravitational potential ®(r) inside the cluster comes
from the Poisson equation:

AP =47G(p —2pp). (31)

Restricting ourselves for simplicity by the model of the
isothermal halo, we find from (31) together with (14), (16):

dd 871G Ra\2
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In accordance with what was said above, the acceleration
—%‘rg =0 at r = Rp. The extremum (maximum) of the po-
tential ® 1s located at the same distance r = R\.

The potential comes from integration of (32):
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The constant C may be found from the boundary condition
atr = RA:
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It implies that C = —%. Then the maximum of the poten-
tial
3GM 3 (8r \'/° ,
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max 2 Ra > 3 pA) (35)

The value of ®,,,, depends on the cluster matter mass
M and the universal dark energy density. Its value is the
same for any halo profile. It gives a quantitative measure
to the deepness of the cluster potential well and determines
the characteristic isothermal velocity of the gravitationally
bound particles (galaxies, intracluster plasma particles and
dark matter particles) in the cluster:
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As we see, this velocity is rather close to the mean veloc-
ity dispersion, V =~ 700 km/s, of the galaxies in the Virgo
cluster

The plasma isothermal temperature
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where k,m are the Boltzmann constant and the hydrogen

atom mass. The temperature 1s roughly equal to the

temperature of the hot X-ray emitting plasma in clusters like

the Virgo. Identifying theoretical value V_iso with the observed
value V for typical clusters, we see that the matter mass of a cluster
can be estimated, if the velocity dispersion of its galaxies 1s
measured:
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In a similar way, the mass may be found, if the theoretical
value of the temperature T _iso is identified with the measured
temperature of the intracluster plasma:
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Finally, if the matter mass of a cluster and 1its velocity dispersion
or its plasma temperature are measured independently, enable one to
estimate the density of the dark energy:
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The empirical data on clusters like the Virgo are consistent with
assumption that the radius of the cluster coincides with the zero
gravity radius, and the dark energy density is universal in the
universe.




Conclusions

The density of DE, measured from SN Ia distributions, and
spectra of fluctuations CMB perturbations, imply the
necessity to take it into account in calculations of the
structure of galaxy clusters. We have done these calculations
in the simple polytropic model, in which it is possible to see

how the model changes with increasing of the influence of
DE.

The existing observational indefiniteness in the parameters
of LC indicate to the dynamic importance of DE in the scale
of the galaxy clusters.

Observational data on the Virgo cluster suggest its radius
R 1s roughly, if not exactly, equal to system’s zero-gravity
radius R . For the Virgo cluster R >~ Rj =~ 10 Mpc.



