OPERA HIGHLIGHTS

Thomas Strauss

Albert Einstein Center LHEP University Bern

On behalf of

The OPERA collaboration

Outline

- OPERA
 - physics goal
 - detector
 - physics results
 - Oscillation
 - Neutrino speed
 - conclusion

May/28/2012

T. Strauss - OPERA Highlights (Volcano 2012)

The OPERA Collaboration

http://operaweb.lngs.infn.it/scientists/?lang=en

3

OPERA

Neutrino propagation

 Neutrinos are created as weak eigenstate, but propagate as mass eigenstate

$$|\nu\rangle = \begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} \qquad \qquad |\nu'\rangle = \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

 When we detect them after their travel, we can detect their current weak eigenstate

$$|\nu'(t)\rangle = e^{-iH't}|\nu'(0)\rangle \qquad \qquad |\nu(t)\rangle ?$$

 This leads to a possible flavour change of neutrinos during their travel, which was observed for solar (Davis, SNO) and atmospheric neutrinos (Super KAMIOKANDE)

Neutrino oscillation – theoretical description

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

3 angles θ_{ij} ; the fraction of v_1 , v_2 or v_3 in a flavor eigenstate 1 phase δ ; CP violation (for Dirac neutrinos) atmospheric (23) and solar (12)

$$c_{ij} = \cos \theta_{ij}$$

 $s_{ij} = \sin \theta_{ij}$

Oscillation probability in the three neutrinos scenario

$$P(\nu_{\ell} \rightarrow \nu_{\ell'}) = |\sum_{i} U_{\ell i} U_{\ell' i}^* e^{-i(m_i^2/2E)L}|^2$$

$$= \sum_{i} |U_{\ell i} U_{\ell' i}^*|^2 + \Re \sum_{i} \sum_{j \neq i} U_{\ell i} U_{\ell' i}^* U_{\ell j}^* U_{\ell' j} e^{\frac{|m_i^2 - m_j^2|L}{2E}}$$

$$E$$

2 mass differences $\Delta m_{12}^2 < \Delta m_{23}^2$

2 neutrino approximation:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (\Delta m_{23}^2 L/4E)$$

Physics goal of Opera

- First detection of neutrino oscillation in direct appearance mode via the v_{μ} to v_{τ} channel.
- Detection of the ν_τ by the τ decay topology
- Low cross section leads to a large mass
 - Emulsion Cloud Chamber: Lead brick, interleaved with emulsion
- Low background requirement: LNGS
- Neutrino beam optimized for detection

May/28/2012

T. Strauss - OPERA Highlights (Volcano 2012)

8

The OPERA detector

- Detect tau-lepton production and decay
- Use electronic detectors to provide "time resolution" to the emulsions and preselect the interaction region

Emulsion Scanning

- Scanning Labs in Europe and Japan
 - 50% sharing
 - European CS scanning at LNGS
 - Data storage of scanned data in DB
 - Example of neutrino vertex
 - Example of scanning station at Bern

bottom layer

10

250 µm

Event collection

Run 2012 is started, currently "bunched beam" mode for v velocity measurement

First v_{τ} candidate

•PLB 691 (2010) 138 •No μ found in spectrometer •All tracks followed till stopping point or reinteraction (no μ found) •In agreement with expectation •Compatible with a hadronic τ decay: $\tau^- \rightarrow h^- (n\pi^0) v_{\tau}$

Full update for Neutrino 2012
New Candidates
New Background estimation

About the first v_{τ} event

- All cuts defined at the proposal time applied, event passed the selection.
- Current expectation 1.7 events in all tau channels (0.5 in singleprong)
- Propability for a background event 5%, expected background so far only 0.16 (0.05) for 4.9x10¹⁹ pot
- What else can we do except for $\boldsymbol{\tau}$ decay
 - Other rare events: charm
 - electron neutrinos
 - Timing of neutrino events

Charm event flight length: 1330 microns x-view kink angle: 209 mrad IP of daughter: 262 microns 1ry muon daughter muon: 2.2 GeV/c 1ry decay P_t: 0.46 GeV/c vertex 4 mm kink daughter muon ↓ \Leftrightarrow 1.3 mm Di muon candidate $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ in spectrometer

ν_e candidate

Neutrino velocity measurement

- Just a brief description of technics and concept, more details and new numbers will come at Neutrino 2012
- TOF: Time of flight TOF_v= $t_B t_A t_{delay}$
 - + t_A prodcution time
 - t_B detection time
- Distance: between source (CNGS) and detector (Opera)
- Velocity: distance / TOF $_{\!\scriptscriptstyle \rm V}$
- Statistical analysis on neutrino events collected 2009-2011
- Special bunched beam mode end of 2011 and in may 2012 for direct comparison event by event

Previous measurements

- 1979: FNAL (Phys. Rev. Lett. 43 (1979) 1361)
- short distance, 30 GeV ν_{μ} , comparison of ν_{μ} and μ TOF
- |v-c|/c ≤ 4x10⁻⁵
- 1988: SN1987A (Phys. Lett. B 201 (1988) 353)
- very long distance (168.000 light years), 10 MeV anti-ve,
- comparison of v and photon arrival time (not SN mod.-dep.)
- $|v-c|/c \le 2x10^{-9}$
- 2007: MINOS (Phys. Rev. D 76 (2007) 072005)
- 730km distance, ~3 GeV v_u, near detector comparison
- $(v-c)/c = (5.1 \pm 2.9) \times 10^{-5}$
- 2011: OPERA
- 730km distance, ~17 GeV v_{μ} , proton BCT comparison

CERN production timestamp creation t_A

- protons accelerated in SPS@CERN
- protons extracted to TT40 transfer tunnel by kicker magnets ("global t0")
- two extractions per SPS filling separated by 50ms, each 10.5µs long, consist of thousands of 2ns-long "bunches"
- proton distribution after kicker measured by fast beam current transformer (BFCT) and read-out by a waveform digitizer (WFD)
- protons focused on graphite target
- Proton interaction: subsequent pion (kaon) decay into neutrinos

CERN production timestamp creation t_A

OPERA detection time t_B (LNGS)

- use plastic scintillators only
- first hit in target trackers is the stop signal

Distance measurement CNGS – LNGS

21

Time link between LNGS and CERN

Time link between LNGS and CERN

Data selection for statistical analysis Sep. 2011

- selection of neutrino events
- internal events (within fiducial volume, same as for the oscillation search): 7586
- external events (interactions in rock) with reconstructed
 3D muon track: 8525 (±2ns additional uncertainty)
- at least 4 GPS satellites in common view
- first hit not isolated in time or space
- if neutrino event passes selection:
 - select the corresponding BCT waveform
- 7235 internal and 7988 external events

Statistical anlysis

Build a likelihood from the sum of the waveforms

All waveforms/ only waveform of events which were selected

$$-_k(\delta t_k) = \prod_j w_k(t_j + \delta t_k) \quad k = 1, 2 \text{ extractions}$$

• measurement of delay δt for Opera

Bunched beam 2011

- bunched beam: instead of 10.5µs extractions:
- 4 single, 3ns-wide bunches, separated by 524ns
 - \rightarrow single-event TOF measurement!
- October 22 to November 6, 2011
- beam intensity lower than nominal (~1/60)
- collected 35 events, same selection criteria,
- same delay corrections

\rightarrow 14 external and 6 internal events

Bunched beam 2011

27

The story of δt

- "The OPERA Collaboration [...] has identified two issues that could significantly affect the reported result.
 - [...] the oscillator used to produce the events time-stamps [...]
 - [...] the connection of the optical fiber [...]" (Feb. 23rd 2012)
- Taken into account these correction, the time of flight could be in agreement with the speed of light.
- Currently a new bunched beam mode (different settings, to increase statistics, all LNGS experiments taking data)
- New preliminary results to be expected at Neutrino 2012

Conclusions

- Opera is the first experiment that observed muon to tau neutrino oscillation appearance by identifying the event candidates by the topological characterization of the tau decay
- Opera is detecting other rare decays as charm decays and is detecting electron neutrino interactions
- Opera is able to measure the time of flight for neutrinos with a higher precision than any previous earth based experiment
- A lot of more exiting news will be released in 2 weeks time, stay tuned

Questions?