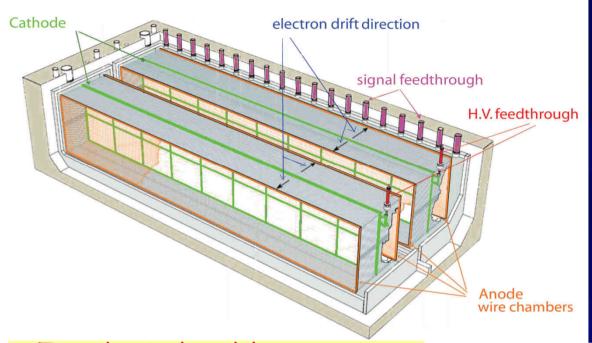
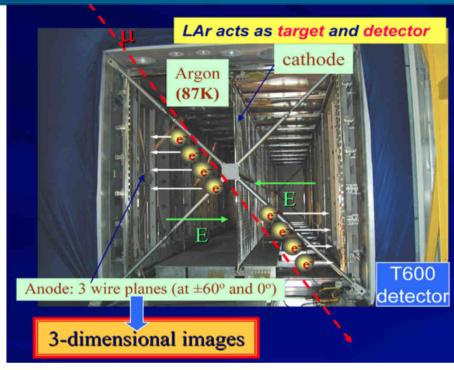

NEUTRINOS FROM ICARUS

C. Farnese
For the ICARUS Collaboration

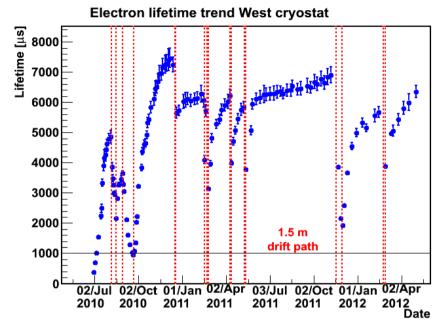

Vulcano Workshop 2012 1 June 2012


The ICARUS Collaboration

M. Antonello^a, P. Aprili^a, B. Baibussinov^b,, P. Benetti^c, E. Calligarich^c, N. Canci^a, S. Centro^b, A. Cesana^f, K. Cieslik^g, D. B. Cline^h, A.G. Cocco^d, A. Dabrowska^g, D. Dequal^b, A. Dermenevⁱ, R. Dolfini^c, C. Farnese^b, A. Fava^b, A. Ferrari^j, G. Fiorillo^d, D. Gibin^b,, S. Gninenkoⁱ, A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^l, A. Ivashkinⁱ, J. Kisiel^l, I. Kochanek^l, J. Lagoda^m, S. Mania^l, G. Mannocchiⁿ, A. Menegolli^c, G. Meng^b, C. Montanari^c, S. Otwinowski^h, L. Perialeⁿ, A. Piazzoli^c, P. Picchiⁿ, F. Pietropaolo^b, P. Plonski^o, A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c, C. Rubbia^{a,j}, P. Sala^f, E. Scantamburlo^e, A. Scaramelli^f, E. Segreto^a, F. Sergiampietri^p, D. Stefan^a, J. Stepaniak^m, R. Sulej^{m,a}, M. Szarska^g, M. Terrani^f, F. Varanini^b, S. Ventura^b, C. Vignoli^a, H. Wang^h, X. Yang^h, A. Zalewska^g, K. Zaremba^o.

- a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy
- b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
- d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
- e Dipartimento di Fisica, Università di L'Aquila, via Vetoio Località Coppito, I-67100 L'Aquila, Italy
- f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Department of Physics and Astronomy, University of California, Los Angeles, USA
- i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- j CERN, CH-1211 Geneve 23, Switzerland
- k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
- I Institute of Physics, University of Silesia, 4 Uniwersytecka st., 40-007 Katowice, Poland
- m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
- n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
- o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
- p INFN, Sezione di Pisa. Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

The ICARUS T600 detector

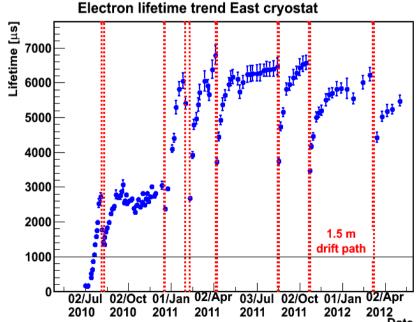

- Two identical modules
 - $3.6 \times 3.9 \times 19.6 \approx 275 \text{ m}^3 \text{ each}$
 - Liquid Ar active mass: ≈ 476 t
 - Drift length = 1.5 m (1 ms)
 - = HV = -75 kV E = 0.5 kV/cm
 - v-drift = 1.55 mm/μs

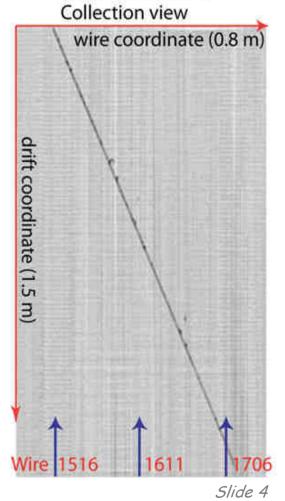
- 4 wire chambers:
 - 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0,±60°
 - ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light detection:

VUV sensitive (128nm) with wave shifter (TPB)

Taking data in LNGS hall B

LAr purification

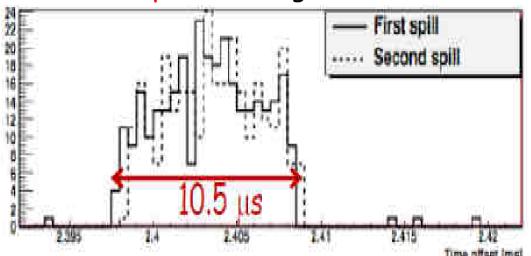

Key feature: LAr purity from electronegative molecules (O_2, H_2O, CO_2) .


LAr continuously filtered, e life-time measured by charge attenuation study on cosmic μ track

Run 9602 Event 15 Run 9602 Event 15

 $\tau_{ele} > 5ms$ $(\sim 60 \text{ ppt } [O_2]_{eq})$

corresponding to 17% max. charge attenuation at 1.5m These results would allow operation at larger drift distances.



Trigger

CNGS trigger:

- CNGS "Early Warning" signal sent 80 ms before the SPS p extraction. It contains the predicted extraction time of the 2 spills \rightarrow opens a 60 μ s wide gate.
- Photomultiplier sum signal for each chamber in coincidence with the beam gate

- 2.40 ms offset value in agreement with 2.44 ms v tof (40 µs fiber transit time from external lab to Hall B).
- Spill duration reproduced (10.5µs)

1 mHz event rate , ≈ 80 events/day

Cosmic ray trigger:

- Photomultiplier sum signal, requiring coincidence of two adjacent chambers (50% cathode transparency)
- Globally 36 mHz trigger rate achieved: ~130 cosmic events/h

SuperDedalus: New trigger system based on charge deposition on TPC wires: DR-slw algorithm implemented in a new SuperDedalus chip (FPGA), installed and used to improve trigger efficiency for CNGS events at low energy (i.e. below 500 MeV)

ICARUS T600 physics potential

- T600 is a major milestone towards the realization of a much more massive multikton LAr detector, but it offers also some interesting physics in itself. The unique imaging capability of ICARUS, its spatial/calorimetric resolutions, and e/π^0 separation allow "to see" events in a new way
- The detector is collecting "bubble chamber like" CNGS events: for 1020 pot
 - > CC event expected ≈ 2800 ev
 - > NC event expected ≈ 900 ev
 - \triangleright Muons from upstream GS rock \approx 12000 ev (\approx 8200 on TPC front face)
 - \triangleright Intrinsic beam v_e CC ≈ 26 eV
 - $\nu_{\mu} = \nu_{\tau}$ detecting τ decay with kinematical criteria (~2 event τ ->e).
 - $\nu_{\mu} = \nu_{e} (\theta_{13})$ from e-like CC events excess at E < 20GeV (~5 events CC)
 - > Search for sterile neutrinos in LSND parameter space, with e-like CC events excess at E>10GeV.
- The T600 is also collecting simultaneously "self triggered" events:
 - \geq ≈ 100 ev/year of atmospheric v CC interactions.
 - ightharpoonup Proton decay with 3×10^{32} nucleons , zero bckg. in some of the channels

CNGS neutrino runs

pot delivered

2010

pot collected ----

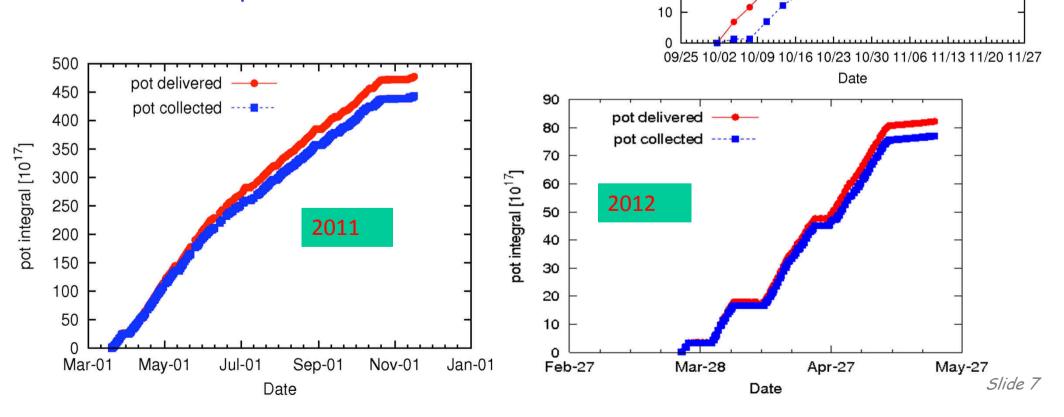
70

60

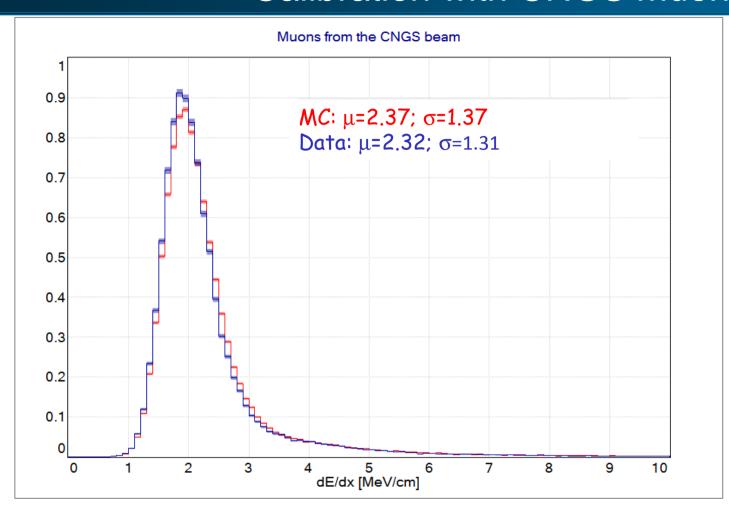
50

30

20


ICARUS fully operational since Oct. 1st 2010: 5.8 1018 pot collected in 2010.

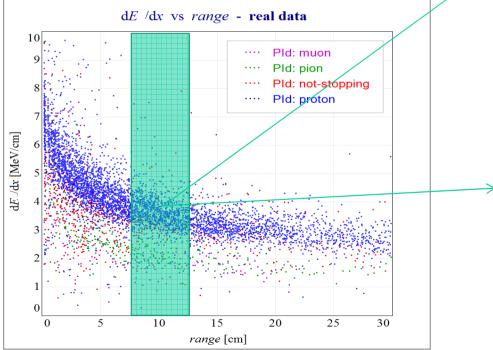
2011 CNGS run: Mar. 19th to Nov. 14th


 $4.44(4.78) \times 10^{19}$ pot collected (delivered): 93% detector live-time oot integral [10¹⁷.

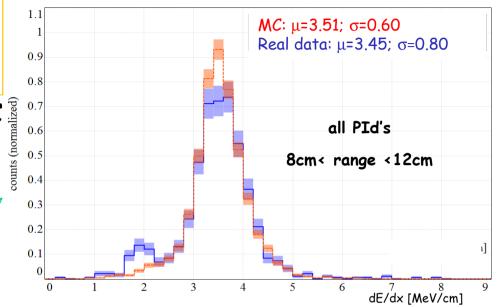
Expected ~1280 CC and ~395 NC events

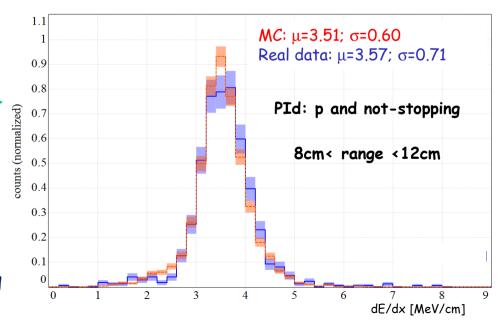
March 23rd 2012: new CNGS events, 7.7×10^{18} pot collected.

Calibration with CNGS muons

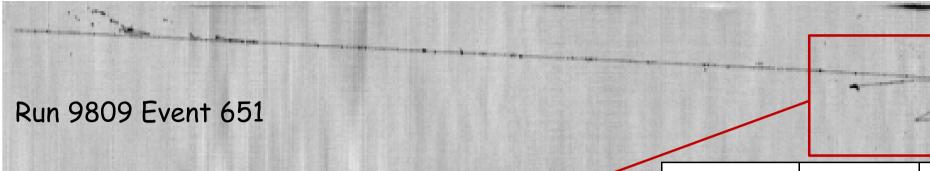

dE/dx distribution for real and MC muon tracks from CNGS events

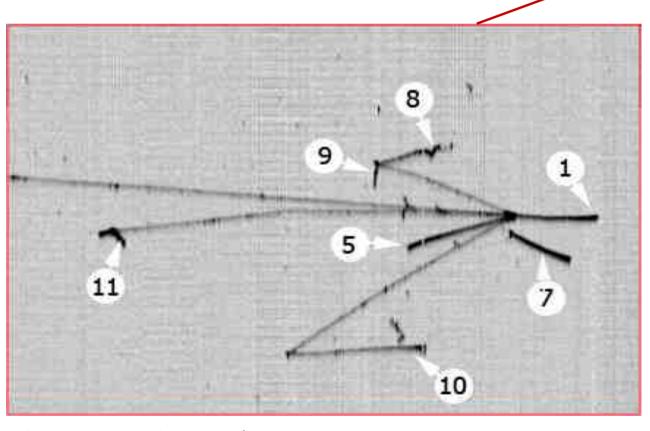
Tracks reconstructed in 3D. δ rays and showers rejected. Same reconstruction on MC muons with CNGS spectrum.


Very nice agreement (~ 2-3%) - still possible small different conditions of data and MC (noise patterns and their effects on δ ray selection).

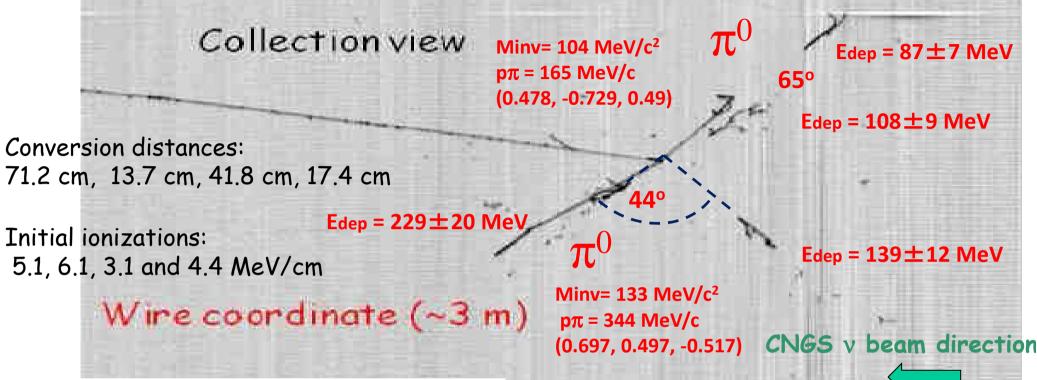

Study of stopping tracks

- Deposited dE/dx vs residual range
- No quenching corr. for dE estimation
- Residual range between 8 and 12 cm
- Good agreement between Data and MC $^{\text{(pozignout)}}$ on clearly separated from protons
- •MC: only protons are considered



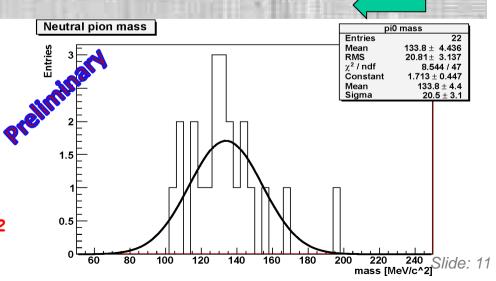

Methods for identification of non-stopping particles are under development

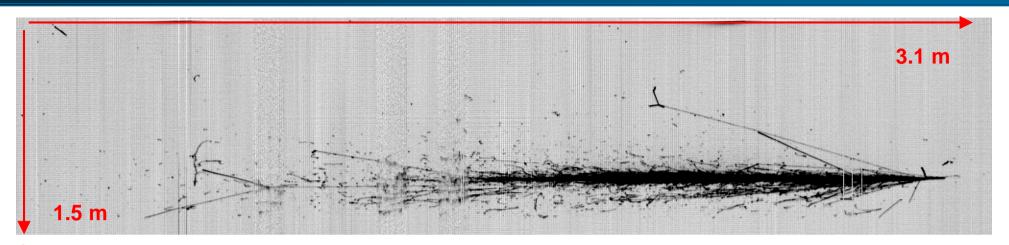
ν_μ CC CNGS event: reconstruction of stopping tracks



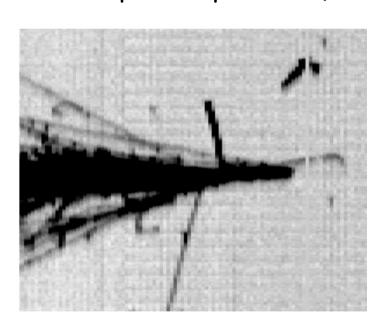
Track	E _{dep} [MeV]	range [cm]
1(p)	185±16	15
5(p)	192±16	20
7(p)	142±12	17
8 (π)	94±8	12
9(p)	26±2	4
10(p)	141±12	23
11(p)	123±10	6

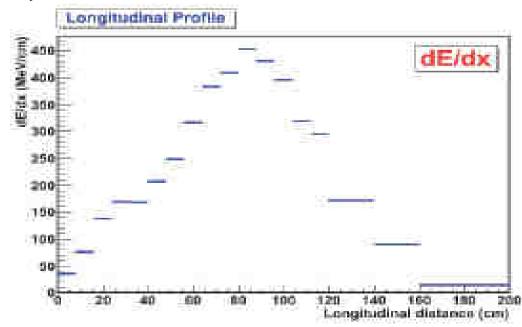
6 protons, 1 pion decays at rest


π^0 reconstruction in CNGS event

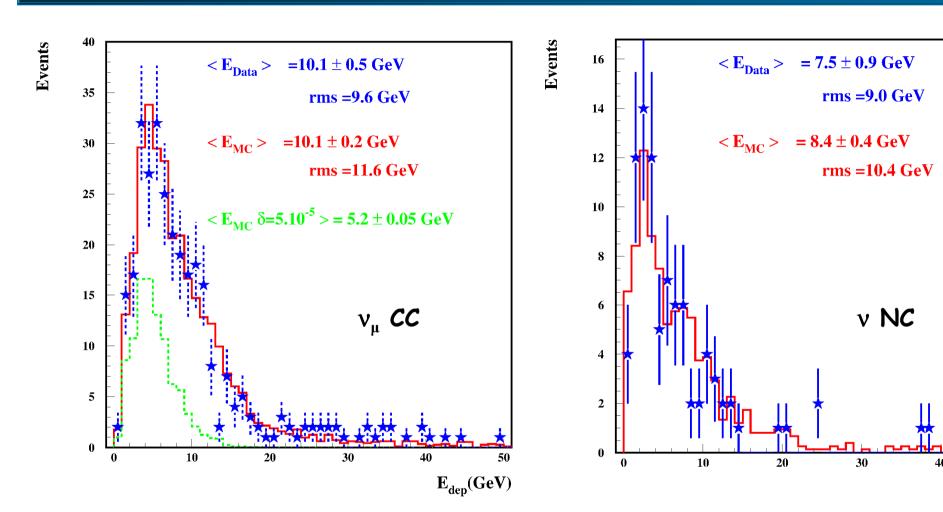

π^0 -showers identified by

- 2γ conversion separated from primary vertex
- Reconstruction of $\gamma\gamma$ invariant mass
- Ionization in the first segment of showers (1 mip or 2 mips)


Mean: 133.8 \pm 4.4(stat) \pm 4 (syst) MeV/c² σ = 20.5 MeV

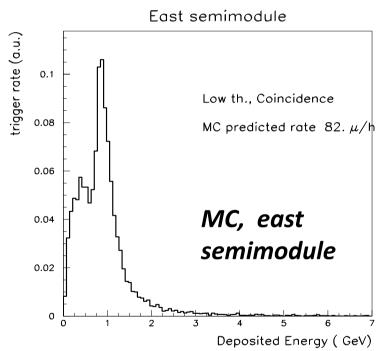


Electron event candidate

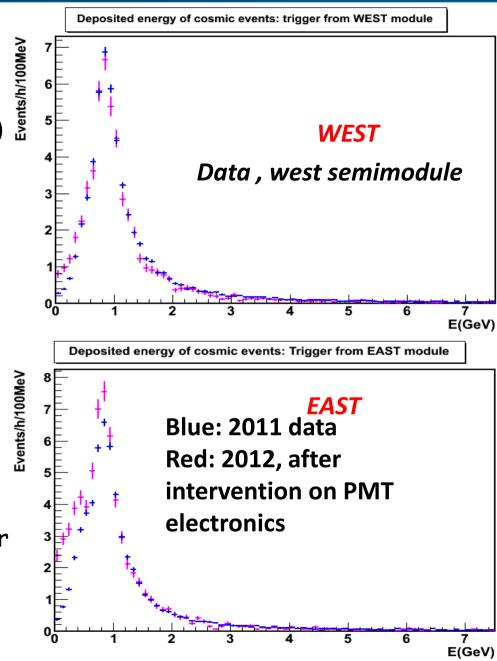


A v_e CC candidate from 2010 run. This event has 45 GeV energy with a single powerful 37 GeV e.m. shower at vertex with a longitudinal profile peaking at the expected position (~88 cm).

Total energy deposition in CNGS v events

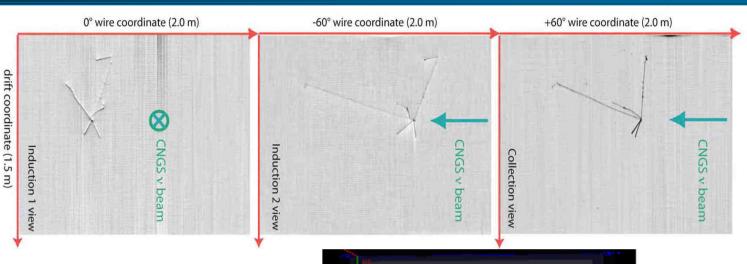


- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics.
- Used for the "superluminal" neutrino searches.

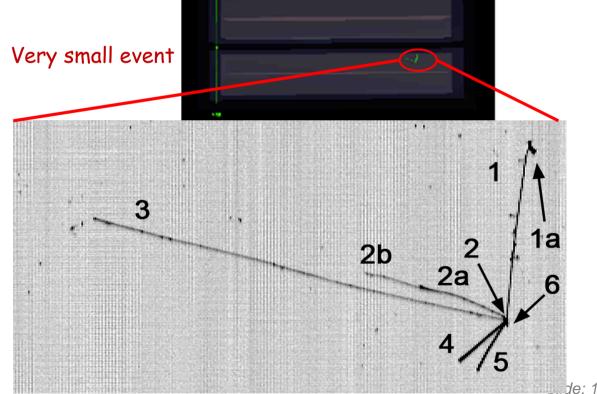

 $E_{dep}(GeV)$

C-ray spectrum

- CR data automatically filtered
- Good agreement of energy spectrum with MC expectation. (MC simulation includes light collection/trigger conditions)



•2012: 30% improvement w.r.t. 2011 trigger rate thanks to new PMT's HV biasing signal readout: signal amplitude increased → efficiency at low energy increased

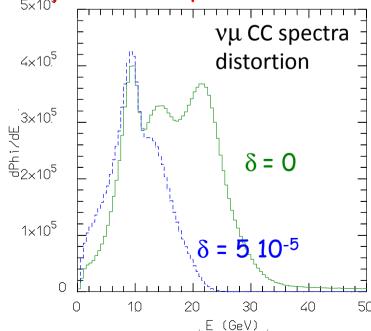


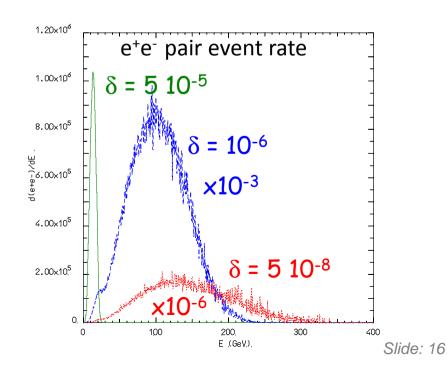
Atmospheric v candidate

- Total visible energy:887 MeV
- Out-of-time wrt CNGS spill, 35° angle w.r.t. beam direction.

Track	E _k [MeV]	Range [cm]
1 (π , decays in	136.1	55.77
flight)	26	3.3
2 (π)	79.1	17.8
2a (μ)	24.1	10.4
2b (e)	231.6	99.1
3 (μ)	168	19.2
4 (p)	152	16.3
5 (p)		2.9
6 (?) (merged with vtx)		

Search for superluminal v's radiative processes in ICARUS


http://dx.doi.org/10.1016/j.physletb.2012.04.014 Phys.Lett.B711. (2012) 270-275


- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via e⁺e⁻ bremsstrahlung, on average 0.78•E_v energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta = (v_v^2 c^2)/c^2$

For $\delta = 5 \cdot 10^{-5}$ (OPERA first claim):

> full v event suppression for E > 30 GeV

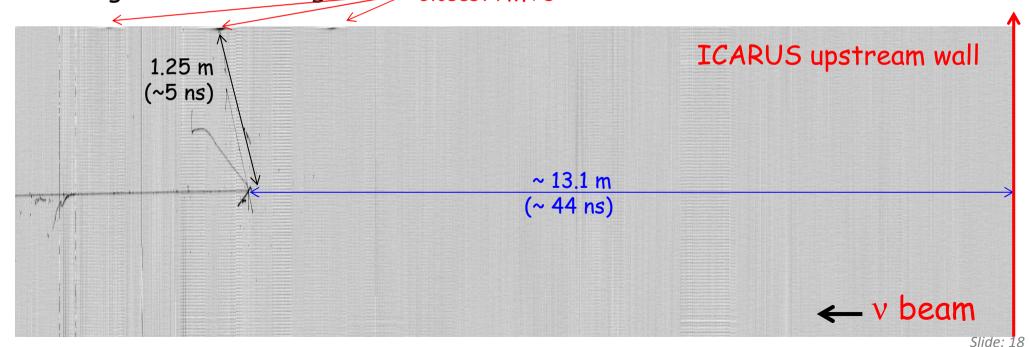
 $\sim 10^7 \text{ ete-pairs }/10^{19} \text{ pot/kt}$

Search for superluminal v's radiative processes in ICARUS

Expected ν event rate and e^+e^- pair production spectra for 10^{19} pot*kt of ICARUS exposure and different δ values

	CC	NC	CC>60 GeV	e^+e^-
δ	(all flavours)	(all flavours)	$(u_{\mu}+ar{ u}_{\mu})$	
0	644	203	57	0
$5 \cdot 10^{-8}$	644	203	57	27
$5 \cdot 10^{-7}$	643	203	56	$2.1 \cdot 10^4$
$5 \cdot 10^{-6}$	594	188	8.5	$7.2 \cdot 10^5$
$\left 5\cdot 10^{-5}\right $	203	85	$< 10^{-6}$	$1.1 \cdot 10^7$

- Effects searched in 6.7 1018 pot·kt ICARUS exposure (2010/11) to CNGS
 - No spectrum suppression found in both NC, CC data (~ 400 events)
 - No e⁺e⁻ pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

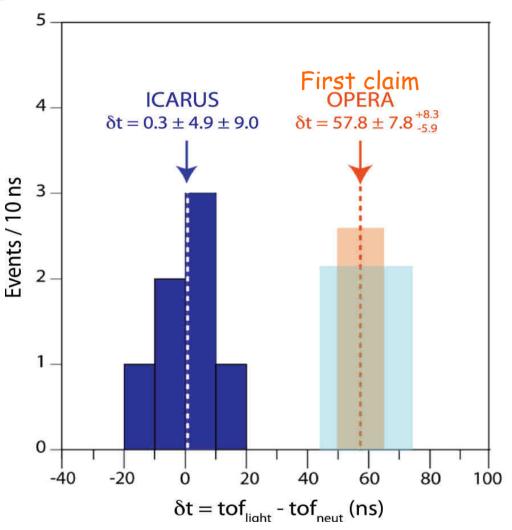

$$\delta = (v_v^2 - c^2)/c^2 < 2.5 \ 10^{-8} \ 90\% \ CL$$

- comparable to the SuperK limit $\delta < 1.4~10^{-8}~$, somewhat larger than the lower energy velocity constraint $\delta < 4~10^{-9}$ from SN1987A.

Slide: 17

Neutrino time of flight with 2011 bunched beam

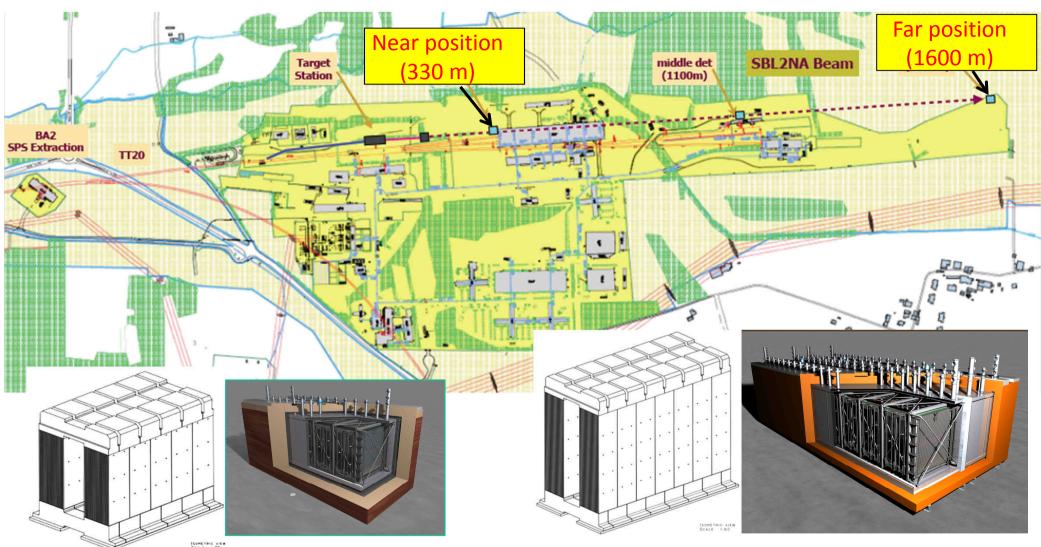
- Bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation
- From October 31st to Nov. 5th ICARUS observed 7 bunched-beam events
- Timing from ICARUS PMT readout equipped with an independent DAQ
- Reference point: upstream wall of active volume -> corrections needed:
 - the position of interaction vertex along 18 m of detector length
 - the distance of event vertex from closest PMT
- Both corrections precisely (~1ns) deduced from event topology in LAr-TPC through visual scanning.


Neutrino time of flight result

http://dx.doi.org/10.1016/j.physletb.2012.05.033(PhysLettB)

- All fixed delays/propagation times calibrated
- Baseline estimation relies on existing available geodesy data (OPERA/LNGS)
- Variable corrections to GPS from OPERA/CERN recipe

- The average $\delta t = tof_c tof_v$ for the 7 events is +0.3 ns \pm 4.9 ns (stat) \pm 9 ns (syst)
- v velocity compatible with speed of light


Presently analyzing data with the new bunched beam run, Common effort LNGS and CERN, involving Borexino, LVD, Opera, Icarus

ICARUS after CNGS2: a new approach to sterile v at CERN/SPS

The experimental "anomalies" found by LSND/Miniboone (observation of electron excess in a anti- v_{μ} beam from accelerators) and by the reactor neutrino experiments (apparent disappearance signal in the anti- v_{e} events) might be due to the presence of "sterile" neutrino

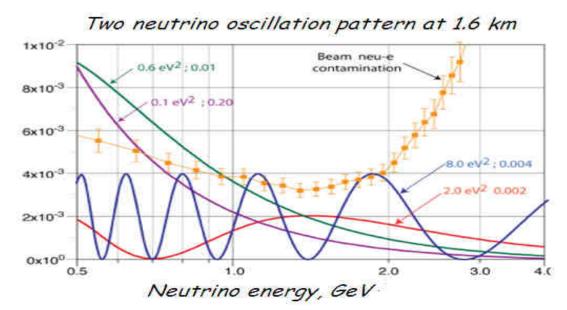
- The LAr-TPC is the viable device to solve these "anomalies" thanks to
 - \triangleright detection capability of genuine v_e events
 - energy resolution/detector granularity largely adequate for E<3GeV</p>
 - \triangleright high level of rejection of associated background events (π^0).
- □ A novel experimental search based on two strictly identical LAr-TPC detector
 + 2 magnetic spectrometers at 330 m and 1600 m from the p target is
 proposed at CERN SPS
- Neutrino beam produced by a 100 GeV proton beam fast extracted from SPS will be centred at ~2 GeV
- Anti-neutrino beam by inverting the current of the horn
- Technical proposal: "Search for "anomalies" from neutrino and antineutrino oscillations at $\Delta m^2 \approx 1 eV^2$ with muon spectrometers and large LAr-TPC imaging detectors" (SPSC-P-347) of March 15th, 2012.

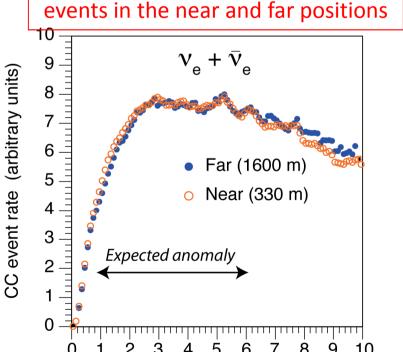
New Neutrino Facility in the CERN North Area

NEAR

New detector T₁₅₀ identical to ICARUS but of smaller size

FAR


T600 moved from LNGS to CERN with new insulation


Unique features of the CERN beam

 The present proposal is a search for spectral differences of electron like specific signatures in two identical detectors but at two different neutrino decay distances.

 \blacktriangleright In absence of oscillations, apart some beam related small spatial corrections, the two v_e intrinsic spectra are a precise copy of each other, independently of the specific experimental event signatures and without any Monte Carlo comparison.

O Therefore an exact, observed proportionality between the two v_e spectra implies directly the absence of neutrino oscillations over the measured interval of L/E.

E. (GeV)

22

Precise identity of intrinsic v-e

Physics program

Full exploration of LNSD $\nu_{\mu} \to \nu_{e}$ allowed region both with ν_{μ} and anti- ν_{μ} beam.

Expected sensitivity at neutrino beam (top left) for 4.5×10^{19} pot and twice as much for antineutrino (top right).

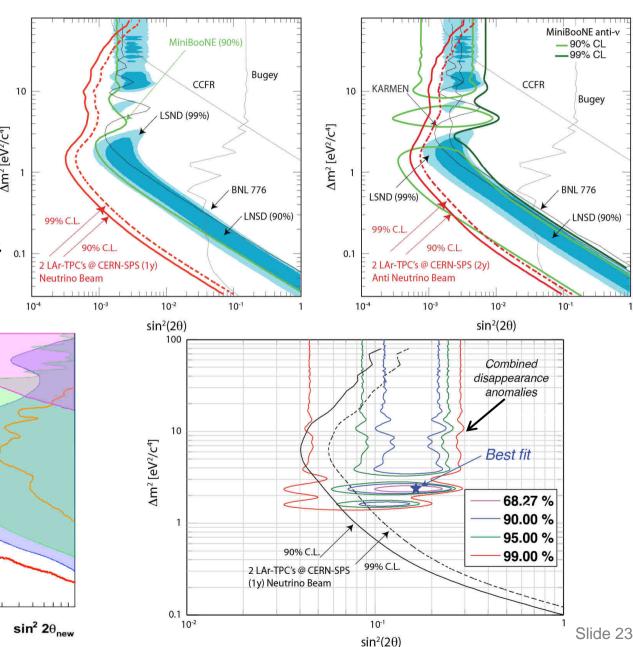
• Search for a possible oscillatory disappearance in the ν_{μ} (bottom left) and in the initial ν_{e} signals (bottom right).

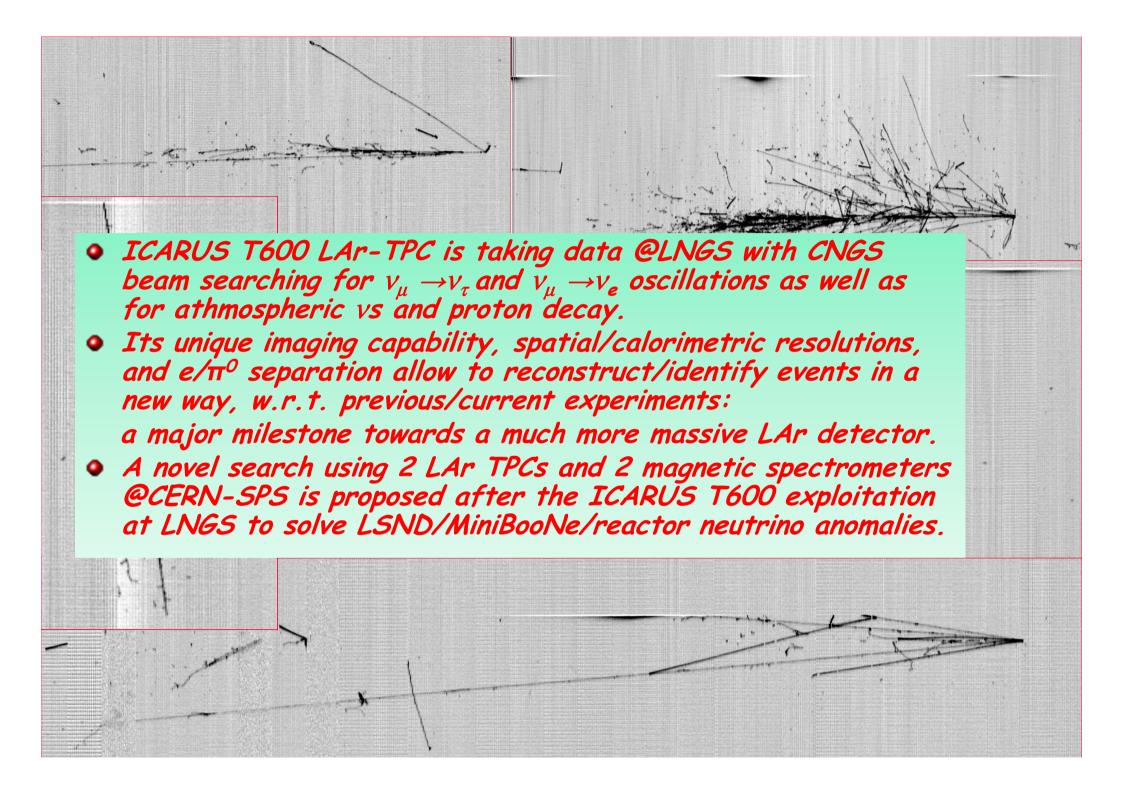
 $v + \overline{v}$, Q-rec + σ_m

CDHS 90% CL

MiniBooNE 90% CL

CCFR excluded 90% CL


SciBooNE + MiniBooNE 90% CL


10⁻²

10⁻¹

10

10⁻¹

