

Status of the CUORE experiment

Claudia Tomei, on behalf of the CUORE collaboration INFN, Sezione di Roma

Vulcano Workshop 2012, June 1st 2012

The Physics Case

Neutrino oscillations experiments have convincingly shown that neutrinos have mass

But there are still open questions in Neutrino Physics:

- * Is neutrino different from antineutrino?
- * What is the absolute scale of the neutrino mass?
- * What is the neutrino mass hierarchy?

The neutrinoless double beta decay (0vDBD) is a unique probe to test the neutrino nature, the neutrino mass scale and the mass hierarchy.

$0\nu DBD$ in Theory

- n _____
- + Extremely rare process ($T_{1/2} > 10^{24}$ y), never observed
- + Allowed only for massive Majorana neutrinos
- Violates lepton number conservation => Beyond SM physics

The decay amplitude depends on the effective Majorana mass:

$$m_{\beta\beta} = |\sum_{k} U_{ek}^2 m_k|$$

The measurable quantity is the half-life:

Phase space factor: ~ Q⁵ Nuclear Matrix element $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2) \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2} \longrightarrow m_{\beta\beta} = \frac{m_e}{\sqrt{F_N T_{1/2}^{0\nu}}}$ FN (Nuclear Factor of Merit)

OvDBD in Experiments

- Signature: two simultaneous electrons with summed energy equal to the Q value of the ββ emitter
- Main issues: mass, background, energy resolution, detection efficiency

tracking

Event topology Particle ID

Loaded Liquid Scintillator

Existing experiments Large source mass

Xenon TPC Particle ID

Bolometric technique

Particle energy converted into phonons \rightarrow temperature variation (ΔT)

Low heat capacity and low base temperature to see small ΔT

Temperature rises are measured by thermistors glued to the crystals

OvDBD with Tellurium

- Active isotope: ¹³⁰Te \rightarrow ¹³⁰Te \rightarrow ¹³⁰Xe + 2 e⁻
- Natural abundance: 34.2 % → no need for enrichment

CUORICINO final result

Crystal Type	Crystal Mass [g]	¹³⁰ Te Mass [g]	Exposure Run I $[kg(^{130}Te)\cdot y]$	Exposure Run II $[kg(^{130}Te)\cdot y]$	Total Exposure $[kg(^{130}Te)\cdot y]$	Total Exposure [10 ²⁴ (¹³⁰ Te Nuclei)· y]
big	790	217.3	0.94	15.80	16.74	77.50
small	330	90.8	0.09	2.02	2.11	9.78
¹³⁰ Te-enriched	330	199.1	0.15	0.75	0.90	4.17
All			1.18	18.57	19.75	91.45

From CUORICINO to CUORE

988 TeO₂ crystals – 5x5x5 cm³ (750 g) Total detector mass: 741 kg Total ¹³⁰Te mass (nat. abundance): 206 kg

Crystal mounting: 19 towers, each with 13 modules of 4 crystals each

 $M \times 20 - T \times 2 - B/20 - \Delta E/1.5$

CUORE sensitivity ~ 35 CUORICINO sensitivity

CUORE Location

LNGS Underground Laboratory (INFN)

CUORE HUT @ LNGS

CUORE Clean Room

11

CTAL: Cuore Tower Assembly Line

Mounting Box Cabling Box Bonding Box Storage Box

Towers Assembly Line: a sealed and flushed stainless steel chamber (Garage) supports a common working plane (UWP), where 4 PMMA chambers (Glove Boxes) will switch, each one with features able to allow specific operations, until tower completion. 12

CTAL: Cuore Tower Assembly Line

CUORE cryostat

- + 6 nested copper shields
- New custom dilution refrigerator
- Detector suspensions independent of refrigerator apparatus ⇒ less vibrational noise
- Minimum lead thickness: 36 cm
- Stringent radiopurity controls on materials and assembly

- CUORE experimental hut and clean room fully equipped for tower assembly
- Cryostat commissiong @ LNGS started april 2012
- + 80% of CUORE crystals ready and stored underground @ LNGS
- + Calibration system under construction
- + Copper cleaning @ LNL started

CUORE background reduction

- Material selection
- Self-shielding
- + Granularity

Starting point: the **CUORICINO** background

DBD (ROI) background: (0.169 \pm 0.006) c/(keV kg y)

CCVR: Cuore Crystals Validation Runs

- CCVR background rate shows a reduction with respect to CUORICINO
- No indication of bulk/surface contaminations from U/Th
- Bulk activities (²¹⁰Po and U/Th limits) within contact specifications
- Energy resolution improved

Extrapolation to CUORE background in ROI (upper limits): 1.1 \cdot 10⁻⁴ counts/keV kg y (bulk) – 4.2 \cdot 10⁻³ counts/ keV kg y (surface)

Crystals OK - Cu surface treatment is the crucial issue

The Three Towers test

Large mass detector to test the Cu contaminations in 3 different configurations inside the CUORICINO cryostat (same background and operation conditions)

Background Budget

Source	Background [counts / kg keV y]	From	
External (μ+n+γ)	< 2 ·10 ⁻³	Measured fluxes + MC	
γ from cryostat + shields	< 1 ·10 ⁻³	Material selection + CUORICINO	
Cu detector holder (bulk)	< 2 ·10 ⁻³	HPGe + NAA + MC	
Cu detector holder (surface)	< 2.5 · 10 ⁻² <i>Preliminary</i>	TTT + MC	
TeO ₂ (bulk)	< 1 ·10 ⁻⁴	CCVR + MC	
TeO ₂ (surface)	< 5.5 · 10 ⁻³	CCVR + MC	

the only evidence of a measurable background

CUORE-0

- 52 CUORE crystals mounted in CUORE-style frames as a single tower with a total TeO₂ mass of 39 kg
- Assembled from detector components manufactured, cleaned and stored following the same stringent protocols defined for CUORE
- Operated in CUORICINO cryostat at LNGS

CUORE-0: Assembly

The tower was built inside the Mounting Box, monitored by two microscopes to ensure right floor heights

- Readout ribbons were glued on the two wire trays
- The wire trays were fixed on the tower
- NTD thermistors were connected with 25µm gold wire to the Cu pads on the ribbons

51/52 thermistors successfully bonded

CUORE-0 Present Status

- The tower was finished in April 2012 and then connected to the cryostat
- A leak was discovered in the cryostat dilution unit, determining a delay of 2 months for fixing
- CUORE-0 will be cooled down in the next weeks

First data soon

CUORE-0: Physics Objectives

- Surpass CUORICINO in physics reach while CUORE is being assembled
- Demonstrate low threshold and potential for Dark Matter and Axion detection

CUORE sensitivity

Time = 5 y and Background =0.01 c/kev/kg/y

24

CUORE Collaboration

Thank You