OVBB an extreme challenge

Fernando Ferroni Sapienza Universita` di Roma INFN Sezione di Roma

Isola di Vulcano – 2 Giugno 2012

OVBB does it exist ?

if it does then:

The background, only the background, nothing else than the background

Outline

The Physics
The Problem
The Future

The Physics

Massive neutrinos makes Majorana conjecture very much attractive

Majorana

The neutrino mass

Three cases

Neutrinoless Double Beta Decay

Neutrino-less DBD ($0\nu\beta\beta$)

The helicity can flip both for a massive Dirac neutrino and for a Majorana one. However in the Dirac case the process is forbidden by lepton number conservation.

If observed the neutrino is a Majorana particle

The neutrino mass connection to DBD

Does DBD measure neutrino mass?

$$m_{\beta\beta} = \sum m_{\nu_{k}} U_{ek}^{2} = \cos^{2}\theta_{13} (m_{1}\cos^{2}\theta_{12} + m_{2}e^{2i\alpha}\sin^{2}\theta_{12}) + m_{3}e^{2i\beta}\sin^{2}\theta_{13}$$

not really.... it is a mixture of couplings, mixing angles and masses. Better than nothing though !

$$m_{\beta\beta} = f(U_{ek}, m_{lightest}, \delta m_{sol}, \Delta m_{atm})$$

The chances in a slide !

 $1/\tau = G(Q,Z) |M_{nucl}|^2 \langle M_{\beta\beta} \rangle^2$

The tough life of an experimentalist

The name of the game

Sensitivity

Sensitivity
$$\propto K_{1} \frac{M \cdot t}{B \cdot \Delta E}$$
 (i.a. • ϵ)

$m_{\beta\beta} \propto \sqrt{(1/\tau)}$

To be crystal clear: a factor 10 better on the mass = a factor 100 in sensitivity

just to impress you

Cuoricino limit: 2.8 x 10²⁴ y says roughly m < 400mev
The center of 'inverted hierarchy band' is at 50 meV
to get at it you shall climb up to > 10²⁶

$t_{1/2} > 10^26$

Cuoricino starting point

not much to work with !

A new experiment aiming to improve a factor 10 on $m_{\beta\beta}$, has to increase by 100 the sensitivity

here is the menu:

M 5 Ton instead of 50 Kg
t 500 y instead of 5 y
ΔE 50 eV instead of 5 keV

None of these !!!!!!

B 0.001 instead of 0.2

Attention please

 \oslash what counts is the product $\Delta E \times b$

I am using the example of the best detector you can todate employ: bolometers, Ge calorimeters pointing to 5 keV energy resolution (FWHM) at the Q-value

On the market

GERDA (Ge-calo) : b=0.01 ΔE=5
 EXO (Xe liquid) : b=0.0015 ΔE=100
 CUORE (TeO2 xtal): b=0.01 ΔE=5

after this humanly controlled parameters Nature comes in with Matrix Elements (not discussed further)

The background

Natural radioactivity

Cuoricino: Background

Cuoricino b=0.18 ± 0.02 c/keV/kg/y **2615 keV TI line**: contribution to the DBD bkg due to a Th contamination (multicompton). . Th (TI) contribution to DBD background: ~ **40%**

2505 keV line: sum of the 2 ⁶⁰Co gammas (1173 and 1332 keV) **Most probable source:** neutron activation of the Copper **Contribution to DBD background:** negligible

Flat background in the energy region above the ²⁰⁸TI 2615 line Contribution to the counting rate in the 0vDBD region: ~ 60% Degraded alpha particles

Il modello standard del fondo

Degraded a's

Quindi c'e' spazio per pensare

T. GAVE HARD . SC ...

LUCIFER

concept

Bringing light underground

Double read-out

BOLUX@CSN5

S. Pirro@LNGS

The total war

Go above Thallium peak at 2610 KeV
 Kill all the alfas by energy release and shape

$ZnMoO_4$

C.Arnaboldi^a, C.Brofferio^{a,b}, O.Cremonesi^a, L.Gironi^{*,a,b}, M.Pavan^{a,b}, G.Pessina^a, S.Pirro^a, E.Previtali^a

The most intriguing crystal

Heat channel

Astropart.Phys. 34 (2011) 344-353 ZnSe scintillating bolometers for Double Beta Decay

Why not?

meed to proof the concept in a pretty solid way

Intersection in the second section of the second section is a second section of the second section is a second section in the second section is a second second

Ton, say 100 MEuro to invest to get at 10²⁶

Quality parameter

Exp	∆E (keV)	b (c kev kg y)	$\Delta E \times b$ (c Ton y)
Gerda	4.5	0.02	90
EXO	80	0.0015	120
CUORE	5	0.02	100
`Lucifer'	10	0.001	10

this is again too simple, no NME , no fidvol, no cost

Conclusions

(requests to the Nature)

makes the neutrinos to be Majorana particles
command the hierarchy to be inverted
find a way to make the process of enrichment cheap (or in alternative switch off most of the radioactive decays ! [remember R. Giskard Reventlov in Asimov multi-logy ?]