Vulcano Workshop 2012

Constraining spacetime torsion with the Moon and Mercury Giovanni Bellettini

Math. Department, Univ. Rome Tor Vergata and INFN-LNF Frascati, Italy

Collaboration with

- R. March (IAC-CNR Rome and INFN-LNF Frascati)
- R. Tauraso (Univ. Rome Tor Vergata and INFN-LNF Frascati)
- S. Dell'Agnello (INFN-LNF Frascati)
[Phys. Rev. D 83, 2011], [Gen. Rel. Gravitation 38, 2011]

Plan of the talk

- short introduction to the problem and to torsion
- constraining torsion with the Moon (geodetic precession, three-body computation)
- constraining torsion with Mercury (perihelion computation)
- constraining torsion with LAGEOS (Lense-Thirring effect).
- In Einstein General Relativity (GR) spacetime is a manifold endowed with a connection $\Gamma^{\nu}{ }_{\lambda \mu}$ coming from a locally lorentzian metric $g_{\lambda \mu}$. In particular $\Gamma^{\nu}{ }_{\lambda \mu}$ is symmetric, i.e.

$$
\begin{equation*}
\Gamma^{\nu}{ }_{\lambda \mu}=\Gamma^{\nu}{ }_{\mu \lambda} \tag{1}
\end{equation*}
$$

and gives origin to a nonvanishing curvature tensor. Because of (1), in GR torsion is not present.

- From the point of view of differential geometry, it seems to be natural to consider also a nonvanishing torsion tensor, and remove assumption (1).

Mao, Tegmark, Guth and Cabi (MTGC) [Phys. Rev. D 76, 2007] claim that if there are theories giving rise to detectable torsion in the Solar system, they should be tested experimentally. They

- develop a parametrized theory imposing symmetry principles
- compute the precessions of gyroscopes
- put constraints on torsion with Gravity Probe B experiment.

In the teleparallel theory of Hayashi and Shirafuji [Phys. Rev. D 19, 1979] a massive body generates a torsion field. Gravitational forces are due entirely to spacetime torsion and not to curvature.

Our plan: to follow the nonstandard parametrized torsion model of MTGC, in the case of orbits of a test body.
We compute the torsion corrections to:

- the precession of the pericenter of a body (either the Moon or LAGEOS) orbiting around a central mass,
- the orbital geodetic precession,
- the orbital Lense-Thirring effect.

We then use the measured Moon geodetic precession, Mercury's perihelion advance and the data from the measurements of LAGEOS satellites, to put contraints on torsion.

Torsion of $\Gamma^{\nu}{ }_{\lambda \mu}$ (E. Cartan, 1922)

Model of spacetime (Riemann-Cartan spacetime):

- a metric $g_{\lambda \mu}$, which yields the length $d s^{2}=g_{\lambda \mu} d x^{\lambda} d x^{\mu}$
- a nonsymmetric connection $\Gamma^{\nu}{ }_{\lambda \mu} \neq \Gamma^{\nu}{ }_{\mu \lambda}$ not independent, because they are required to be compatible one each other: the Γ-parallel transport conserves the g scalar product. The torsion tensor T reads as:

$$
T_{\lambda \mu}{ }^{\nu}:=\frac{1}{2}\left(\Gamma^{\nu}{ }_{\lambda \mu}-\Gamma^{\nu}{ }_{\mu \lambda}\right)
$$

$\Gamma^{\nu}{ }_{\mu \nu}$ is determined uniquely by $g_{\mu \nu}$ and by the torsion tensor as follows:

$$
\Gamma_{\lambda \mu}^{\nu}=\left\{\begin{array}{c}
\nu \\
\lambda \mu
\end{array}\right\}+T_{\lambda \mu}^{\nu}+T_{\mu \lambda}^{\nu}+T_{\lambda \mu}^{\nu}
$$

where $\{\cdot\}$ is the Levi-Civita connection.

Geometric meaning of torsion tensor and asymmetry of a connection: an attempt to construct an infinitesimal parallelogram with sides $d \sigma$ spanned by two vectors X^{λ}, Y^{μ}, leads to a pentagon whose closing side is $\left(\Gamma^{\nu}{ }_{\lambda \mu}-\Gamma^{\nu}{ }_{\mu \lambda}\right)(d \sigma)^{2}+O\left((d \sigma)^{3}\right)$

The hessian of a function defined on M is not symmetric.
Examples: density of dislocations in a crystal (Hehl et al, 1973).

Example (E. Cartan, 1923). Consider the unit sphere in \mathbb{R}^{3} without the poles, with $g_{\lambda \mu}$ induced (riemannian) metric. We call two vectors parallel if their angles wih the meridian through that point coincide. Then

- ${ }^{\nu}{ }_{\lambda \mu}$ is compatible with the metric
- $\Gamma^{\nu}{ }_{\lambda \mu}$ has vanishing Riemann tensor (parallel transport a vector along a quadrilateral made up of latitudes and longitudes)
- $\Gamma^{\nu}{ }_{\lambda \mu}$ has nonvanishing torsion, $T_{\theta \phi}^{\phi}$
- the autoparallels of $\Gamma^{\nu}{ }_{\lambda \mu}$ differ from geodesics, and intersect the meridians at a constant angle.

Testing spacetime torsion by secular perturbations of orbits:

- geodetic precession (de Sitter 1916) of the Moon perigee: 19.2 mas/yr in GR;
- correction to the secular precession of the perihelion of Mercury: 43" / century in GR;
- Lense-Thirring effect (1918) on the longitude of the nodes of the LAGEOS satellites: $31 \mathrm{mas} / \mathrm{yr}$ in GR.
Torsion modifies such effects. Measurements of orbital elements (by Laser Ranging, Moon and LAGEOS satellites) and Radar Ranging (Mercury) can be used to constrain torsion.

Main working assumptions:

- weak field approximation and slow motion
- spherical (resp. axial, with Earth spherically symmetric and uniformly rotating) symmetry
- bodies move along autoparallel trajectories, and not along geodesics. The system expressing autoparallel trajectories is

$$
\frac{d^{2} x^{\nu}}{d \tau^{2}}+\Gamma^{\nu}{ }_{\lambda \mu} \frac{d x^{\lambda}}{d \tau} \frac{d x^{\mu}}{d \tau}=0
$$

the velocity vector is transported parallel to itself. Only autoparallel trajectories depend on torsion parameters. The antisymmetric part of $T_{\lambda \mu}^{\nu}$ cannot be measured.

- in the computation of the geodetic precession (a three-body problem, Sun and Earth supposed nonrotating) we assume that the we can superimpose linearly the metric and torsion fields of Sun and Earth to obtain the global fields:

$$
g_{\lambda \mu}=\left(g_{\lambda \mu}\right)_{\text {Sun }}+\left(g_{\lambda \mu}\right)_{\text {Earth }} \quad T_{\lambda \mu}^{\nu}=\left(T_{\lambda \mu}^{\nu}\right)_{\text {Sun }}+\left(T_{\lambda \mu}^{\nu}\right)_{\text {Earth }}
$$

Metric and torsion tensors around a spherically symmetric body (Sun/Earth) in spherical coordinates (t, r, θ, ϕ). If m is the mass of the body, and γ and β are PPN parameters, to second order in $m / r \ll 1$ we have

$$
\begin{aligned}
d s^{2} & =-h(r) d t^{2}+f(r) d r^{2}+r^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right] \\
h(r) & =1-2 \frac{m}{r}+2(\beta-\gamma) \frac{m^{2}}{r^{2}}, \quad f(r)=1+2 \gamma \frac{m}{r}
\end{aligned}
$$

where all other PPN parameters are supposed to be negligible. Symmetry arguments imply that the general expression of the torsion tensor is

$$
\begin{aligned}
& T_{t r}^{t}=t_{1} \frac{m}{2 r^{2}}+t_{3} \frac{m^{2}}{r^{3}} \\
& T_{r \theta}^{\theta}=S_{r \phi}^{\phi}=t_{2} \frac{m}{2 r^{2}}+t_{4} \frac{m^{2}}{r^{3}}
\end{aligned}
$$

$t_{1}, t_{2}, t_{3}, t_{4}$ are torsion parameters (all other components vanish. In addition t_{4} will not enter in our computations).
$t_{1}=0$ will be fixed by the imposing the Newtonian limit.

$\xi^{\alpha}, \rho_{\oplus}$ heliocentric rect. coordinates of the Earth X^{α}, Δ heliocentric rect. coordinates of the Moon x^{α}, r geocentric rect. coordinates of the Moon Autoparallel trajectories (m_{\odot} mass of the Sun):

$$
\begin{aligned}
\frac{d^{2} x^{\alpha}}{d t^{2}} & +m_{\odot}\left(\frac{X^{\alpha}}{\Delta^{3}}-\frac{\xi^{\alpha}}{\rho_{\oplus}^{3}}\right)=2\left(\beta-t_{3}\right) m_{\odot}^{2}\left(\frac{X^{\alpha}}{\Delta^{4}}-\frac{\xi^{\alpha}}{\rho_{\oplus}^{4}}\right) \\
& +\left(t_{2}+2\right) m_{\odot}\left(\frac{\dot{\Delta} \dot{\xi}^{\alpha}}{\Delta^{2}}-\frac{\dot{\rho}_{\oplus} \dot{\xi}^{\alpha}}{\rho_{\oplus}^{2}}\right)+3 \gamma m_{\odot}\left(\frac{X^{\alpha} \dot{\Delta}^{2}}{\Delta^{3}}-\frac{\xi^{\alpha} \dot{\rho}_{\oplus}^{2}}{\rho_{\oplus}^{3}}\right) \\
& -\left(2 \gamma+t_{2}\right) m_{\odot}\left(\frac{X^{\alpha} \sum_{\sigma}\left(\dot{X}^{\sigma}\right)^{2}}{\Delta^{3}}-\frac{\xi^{\alpha} \sum_{\sigma}\left(\dot{\xi}^{\sigma}\right)^{2}}{\rho_{\oplus}^{3}}\right)
\end{aligned}
$$

Using perturbative methods in Celestial Mechanics, we find the secular precession of the node Ω of the satellite orbiting around Earth:

$$
(\delta \Omega)_{\mathrm{sec}}=\frac{1}{2} \frac{m_{\odot} \nu_{0}}{\rho_{\oplus}}\left(1+2 \gamma+\frac{3}{2} t_{2}\right)
$$

where ν_{0} is the angular velocity of the Earth. $(\delta \Omega)_{\text {sec }}$ is independent of the details of the satellite.
The same result is obtained for the secular precession of the lunar perigee

$$
(\delta \widetilde{\omega})_{\mathrm{sec}}=\frac{1}{2} \frac{m_{\odot} \nu_{0}}{\rho_{\oplus}}\left(1+2 \gamma+\frac{3}{2} t_{2}\right)
$$

When torsion is zero the usual PPN formulas are found (in particular, when $\gamma=\beta=1$ de Sitter's formulas).

Constraining torsion with the Moon

$$
b \equiv \frac{\text { geodetic precession with torsion }}{\text { geodetic precession in GR }}=\frac{1}{3}(1+2 \gamma)+\frac{t_{2}}{2}
$$

Using the Lunar Laser Ranging data giving the relative deviation from GR (Williams et al., 2004), we find

$$
|b-1|<0.0064
$$

Using the Cassini measurement $\gamma=1+(2.1 \pm 2.3) \times 10^{-5}$
(Bertotti et al., 2003) gives

$$
\left|t_{2}\right|<0.0128
$$

Constraining torsion with Mercury

We use the autoparallel trajectories. If $\widetilde{\omega}$ is the longitude of the pericenter, the secular contribution $(\delta \widetilde{\omega})_{\text {sec }}$ reads as

$$
(\delta \widetilde{\omega})_{\mathrm{sec}}=\left(2+2 \gamma-\beta+2 t_{2}+t_{3}\right) \frac{m_{\odot}}{a\left(1-e^{2}\right)} v
$$

a is the semimajor axis of the orbit, e is the eccentricity and v the true anomaly. Then
$B \equiv \frac{\text { perihelion precession with torsion }}{\text { perihelion precession in GR }}=\frac{1}{3}\left(2+2 \gamma-\beta+2 t_{2}+t_{3}\right)$
Using the planetary radar ranging data giving the relative deviation from GR of 10^{-3} (Shapiro et al., 1989), we find

$$
|B-1|<0.001
$$

Using the Cassini measurement one gets $\left|1-\beta+t_{3}\right|<0.0286$. If in addition we assume $\beta=1+(1.2 \pm 1.1) \times 10^{-4}$ (Williams et al, 2004), then

$$
\left|t_{3}\right|<0.0286
$$

Constraining torsion with LAGEOS

Lense-Thirring effect. Metric around a uniformly rotating spherical body (Earth):

$$
\begin{aligned}
d s^{2}= & -\left(1-2 \frac{m}{r}\right) d t^{2}+\left(1+2 \gamma \frac{m}{r}\right) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& -2\left(1+\gamma+\frac{\alpha_{1}}{4}\right) \frac{J}{r} \sin ^{2} \theta d t d \phi
\end{aligned}
$$

m mass and J angular momentum of the body, α_{1} PPN parameter.
The torsion tensor depends on t_{1}, t_{2} but also on another set w_{1}, \ldots, w_{5} of torsion parameters.
Using the corresponding autoparallel trajectories of the satellites (LAGEOS), the precession of the node Ω reads as

$$
(\delta \Omega)_{\mathrm{sec}}=\frac{J}{a^{3}\left(1-e^{2}\right)^{3 / 2}}\left(1+\gamma+\frac{\alpha_{1}}{4}-\frac{w_{2}-w_{4}}{2}\right)
$$

a the semimajor axis of the satellite, e the eccentricity of the orbit.
$b_{\Omega} \equiv \frac{\text { precession of the node with torsion }}{\text { precession of the node in GR }}=\frac{1}{2}\left(1+\gamma+\frac{\alpha_{1}}{4}-\frac{w_{2}-w_{4}}{4}\right)$
Using $\left|\alpha_{1}\right|<10^{-4}$ and the measurements of Ciufolini, Pavlis (2004), we get

$$
-0.36<w_{2}-w_{4}<0.44
$$

Reasoning similarly for the perigee, we eventually have

$$
-0.22<0.11 w_{1}-0.20 w_{2}-0.06 w_{3}+0.20 w_{4}+0.06 w_{5}<0.42
$$

