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Plan of the talk

I short introduction to the problem and to torsion

I constraining torsion with the Moon (geodetic precession,
three-body computation)

I constraining torsion with Mercury (perihelion computation)

I constraining torsion with LAGEOS (Lense-Thirring effect).



• In Einstein General Relativity (GR) spacetime is a manifold
endowed with a connection Γν

λµ coming from a locally lorentzian
metric gλµ. In particular Γν

λµ is symmetric, i.e.

Γν
λµ = Γν

µλ (1)

and gives origin to a nonvanishing curvature tensor. Because of
(1), in GR torsion is not present.

• From the point of view of differential geometry, it seems to be
natural to consider also a nonvanishing torsion tensor, and remove
assumption (1).



Mao, Tegmark, Guth and Cabi (MTGC) [Phys. Rev. D 76, 2007]
claim that if there are theories giving rise to detectable torsion in
the Solar system, they should be tested experimentally. They

• develop a parametrized theory imposing symmetry principles

• compute the precessions of gyroscopes

• put constraints on torsion with Gravity Probe B experiment.

In the teleparallel theory of Hayashi and Shirafuji [Phys. Rev. D
19, 1979] a massive body generates a torsion field. Gravitational
forces are due entirely to spacetime torsion and not to curvature.



Our plan: to follow the nonstandard parametrized torsion model of
MTGC, in the case of orbits of a test body.
We compute the torsion corrections to:

• the precession of the pericenter of a body (either the Moon or
LAGEOS) orbiting around a central mass,

• the orbital geodetic precession,

• the orbital Lense-Thirring effect.

We then use the measured Moon geodetic precession, Mercury’s
perihelion advance and the data from the measurements of
LAGEOS satellites, to put contraints on torsion.



Torsion of Γν
λµ (E. Cartan, 1922)

Model of spacetime (Riemann-Cartan spacetime):

- a metric gλµ, which yields the length ds2 = gλµdxλdxµ

- a nonsymmetric connection Γν
λµ 6= Γν

µλ

not independent, because they are required to be compatible one
each other: the Γ-parallel transport conserves the g scalar product.
The torsion tensor T reads as:

T ν
λµ :=

1

2

(
Γν

λµ − Γν
µλ

)
Γν

µν is determined uniquely by gµν and by the torsion tensor as
follows:

Γν
λµ =

{
ν

λµ

}
+ T ν

λµ + T ν
µλ + T ν

λµ

where {·} is the Levi-Civita connection.



Geometric meaning of torsion tensor and asymmetry of a
connection: an attempt to construct an infinitesimal parallelogram
with sides dσ spanned by two vectors Xλ,Y µ, leads to a pentagon

whose closing side is
(
Γν

λµ − Γν
µλ

)
(dσ)2 + O((dσ)3)

p
0

Y X
X( )

X

Y( )

XY  YX 
µ

µ
µ

µY

The hessian of a function defined on M is not symmetric.
Examples: density of dislocations in a crystal (Hehl et al, 1973).



Example (E. Cartan, 1923). Consider the unit sphere in R3

without the poles, with gλµ induced (riemannian) metric. We call
two vectors parallel if their angles wih the meridian through that
point coincide. Then

- Γν
λµ is compatible with the metric

- Γν
λµ has vanishing Riemann tensor (parallel transport a vector

along a quadrilateral made up of latitudes and longitudes)

- Γν
λµ has nonvanishing torsion, Tφ

θφ

- the autoparallels of Γν
λµ differ from geodesics, and intersect

the meridians at a constant angle.

r

p

p

q
s r

q

s



Testing spacetime torsion by secular perturbations of orbits:

• geodetic precession (de Sitter 1916) of the Moon perigee:
19.2 mas/yr in GR;

• correction to the secular precession of the perihelion of
Mercury: 43′′/century in GR;

• Lense-Thirring effect (1918) on the longitude of the nodes of
the LAGEOS satellites: 31 mas/yr in GR.

Torsion modifies such effects. Measurements of orbital elements
(by Laser Ranging, Moon and LAGEOS satellites) and Radar
Ranging (Mercury) can be used to constrain torsion.



Main working assumptions:

I weak field approximation and slow motion

I spherical (resp. axial, with Earth spherically symmetric and
uniformly rotating) symmetry

I bodies move along autoparallel trajectories, and not along
geodesics. The system expressing autoparallel trajectories is

d2xν

dτ2
+ Γν

λµ

dxλ

dτ

dxµ

dτ
= 0,

the velocity vector is transported parallel to itself. Only
autoparallel trajectories depend on torsion parameters. The
antisymmetric part of T ν

λµ cannot be measured.

I in the computation of the geodetic precession (a three-body
problem, Sun and Earth supposed nonrotating) we assume
that the we can superimpose linearly the metric and torsion
fields of Sun and Earth to obtain the global fields:

gλµ = (gλµ)Sun + (gλµ)Earth T ν
λµ = (T ν

λµ )Sun + (T ν
λµ )Earth



Metric and torsion tensors around a spherically symmetric body
(Sun/Earth) in spherical coordinates (t, r , θ, φ). If m is the mass of
the body, and γ and β are PPN parameters, to second order in
m/r << 1 we have

ds2 = −h(r)dt2 + f (r)dr2 + r2
[
dθ2 + sin2 θdφ2

]
h(r) = 1− 2

m

r
+ 2(β − γ)

m2

r2
, f (r) = 1 + 2γ

m

r

where all other PPN parameters are supposed to be negligible.
Symmetry arguments imply that the general expression of the
torsion tensor is

T t
tr =t1

m

2r2
+ t3

m2

r3

T θ
rθ =S φ

rφ = t2
m

2r2
+ t4

m2

r3

t1, t2, t3, t4 are torsion parameters (all other components vanish. In
addition t4 will not enter in our computations).
t1 = 0 will be fixed by the imposing the Newtonian limit.



ξα, ρ⊕ heliocentric rect. coordinates of the Earth
Xα,∆ heliocentric rect. coordinates of the Moon
xα, r geocentric rect. coordinates of the Moon
Autoparallel trajectories (m� mass of the Sun):

d2xα

dt2
+ m�

(Xα

∆3
− ξα

ρ3
⊕

)
= 2(β − t3)m

2
�

(Xα

∆4
− ξα

ρ4
⊕

)
+ (t2 + 2)m�

(∆̇ξ̇α

∆2
− ρ̇⊕ξ̇α

ρ2
⊕

)
+ 3γm�

(Xα∆̇2

∆3
−

ξαρ̇2
⊕

ρ3
⊕

)
− (2γ + t2)m�

(Xα
∑

σ(Ẋσ)2

∆3
−

ξα
∑

σ(ξ̇σ)2

ρ3
⊕

)



Using perturbative methods in Celestial Mechanics, we find the
secular precession of the node Ω of the satellite orbiting around
Earth:

(δΩ)sec =
1

2

m�ν0

ρ⊕

(
1 + 2γ +

3

2
t2

)
where ν0 is the angular velocity of the Earth. (δΩ)sec is
independent of the details of the satellite.
The same result is obtained for the secular precession of the lunar
perigee

(δω̃)sec =
1

2

m�ν0

ρ⊕

(
1 + 2γ +

3

2
t2

)
When torsion is zero the usual PPN formulas are found (in
particular, when γ = β = 1 de Sitter’s formulas).



Constraining torsion with the Moon

b ≡ geodetic precession with torsion
geodetic precession in GR

=
1

3
(1 + 2γ) +

t2
2

Using the Lunar Laser Ranging data giving the relative deviation
from GR (Williams et al., 2004), we find

|b − 1| < 0.0064

Using the Cassini measurement γ = 1 + (2.1± 2.3)× 10−5

(Bertotti et al., 2003) gives

|t2| < 0.0128



Constraining torsion with Mercury

We use the autoparallel trajectories. If ω̃ is the longitude of the
pericenter, the secular contribution (δω̃)sec reads as

(δω̃)sec = (2 + 2γ − β + 2t2 + t3)
m�

a(1− e2)
v

a is the semimajor axis of the orbit, e is the eccentricity and v the
true anomaly. Then

B ≡ perihelion precession with torsion
perihelion precession in GR

=
1

3
(2+2γ−β+2t2 + t3)

Using the planetary radar ranging data giving the relative deviation
from GR of 10−3 (Shapiro et al., 1989), we find

|B − 1| < 0.001.

Using the Cassini measurement one gets |1− β + t3| < 0.0286. If
in addition we assume β = 1 + (1.2± 1.1)× 10−4 (Williams et al,
2004), then

|t3| < 0.0286



Constraining torsion with LAGEOS

Lense-Thirring effect. Metric around a uniformly rotating spherical
body (Earth):

ds2 =−
(
1− 2

m

r

)
dt2 +

(
1 + 2γ

m

r

)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
− 2

(
1 + γ +

α1

4

) J

r
sin2 θ dtdφ

m mass and J angular momentum of the body, α1 PPN parameter.
The torsion tensor depends on t1, t2 but also on another set
w1, . . . ,w5 of torsion parameters.
Using the corresponding autoparallel trajectories of the satellites
(LAGEOS), the precession of the node Ω reads as

(δΩ)sec =
J

a3(1− e2)3/2

(
1 + γ +

α1

4
− w2 − w4

2

)
a the semimajor axis of the satellite, e the eccentricity of the orbit.



bΩ ≡ precession of the node with torsion
precession of the node in GR

=
1

2
(1+γ+

α1

4
−w2 − w4

4

)
Using |α1| < 10−4 and the measurements of Ciufolini, Pavlis
(2004), we get

−0.36 < w2 − w4 < 0.44

Reasoning similarly for the perigee, we eventually have

−0.22 < 0.11w1 − 0.20w2 − 0.06w3 + 0.20w4 + 0.06w5 < 0.42


