The NA62 experiment at CERN and the measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ \nu \nu$

A.Antonelli(INFN-LNF) on behalf of the NA62 Collaboration

Interest of $K^+ \rightarrow \pi^+ \nu \nu$ decay

- FCNC process, forbidden at tree level in the SM
- Ultra-rare, but promising opportunity to test SM, BR calculable with few ~10% precision
 - small-distance contribution dominates, hadronic contribution related to BR (K→πev)
- Very sensitive to physics beyond the SM: possible enhancement/suppression of BR by > ~30%
- In the SM, allows determination of V_{td} at 7% level, with no need of QCD input

A NP signal for both K->πνν modes might allow identification of a specific NP model: SUSY, MSSM with or without new CP violation or Flavour violation sources, extra-dimensions, etc.

NA62 @ CERN SpS North Area

NA62 collaboration:

Birmingham, Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, **IHEP Protvino, INR** Moscow, Liverpool, Louvainla-Neuve, Mainz, Merced, Naples, Perugia, Pisa, Rome I, Rome II, Saclay, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin

Straw tracker spectrometer (P_{track})

4 straw tracker stations in vacuum

- Very good p resolution: $\sigma_p/p < 1\%$
- Angular resolution: $\sigma_{\theta} < 60 \mu rad$
- Material budget: < $4 \times 0.5\%$ X_o
- High efficiency: > 99% hit efficiency
- High rate: 0.5 MHz in hottest area

- 4 views/station (u-v, x-y)
- 2.1 m diameter acceptance
- 12 cm beam hole
- Track angle: ±3°
- $\sigma < 130 \,\mu\text{m}$ per view
- 1800 straw tubes per station:
 - 30 μm Au-plated wire
 - 100 μm straw straightness
 - Ar(70%)/CO₂(30%)

Kinematical rejection MC performance

Main backgrounds sources:

• $K^+ \rightarrow \mu^+ \nu$ (63%), $K^+ \rightarrow \pi^+ \pi^0$ (21%) + beam halo and particle interactions

Sources of inefficiency:

- Multiple scattering, non gaussian tails
- Kπ mis-match by Giga-tracker

rejection power 10⁴ $\pi^+\pi^0$, $\mu^+\nu$, 3π

Photon vetoes (LAV)

- 12 stations along the decay tube
- 2500 lead glass blocks, re-used from **OPAL** electromagnetic calorimeter
- 11/12 stations operate in vacuum
- Cover 8 to 50 mrad

- 3 different ring sizes, 5 staggered layers of blocks, for a total of ≈20 X_o
- 8/12 completed stations In about 2 years
- Custom time-over-threshold electronics (double threshold, down to ≈1/5 MIP)
- $\sigma_{\rm E}/{\rm E} \approx 9\%/{\rm VE[GeV]}$
- $\sigma_t \approx 210 \text{ ps/VE[GeV]}$

A.Antonelli INFN-LNF

Other photon veto detectors

LKr calorimeter

Reused NA48 Liquid Krypton calorimeter. Cover angles <8mrad Efficiency measured in a dedicated data taking

Energy	Inefficiency		
$2 < E_{\gamma} < 3.5 \text{ GeV}$	$(5.8 \pm 1.3) \times 10^{-4}$		
$3.5 < E_{\gamma} < 5 \text{ GeV}$	$(1.6 \pm 0.4) \times 10^{-4}$		
$5 < E_{\gamma} < 7.5 \text{ GeV}$	(2.8 ± 1.6)×10 ⁻⁵		
$7.5 < E_{\gamma} < 10 \text{ GeV}$	<2×10 ⁻⁵		
$E_{\gamma} > 10 \text{ GeV}$	<1×10 ⁻⁵		

Small Angle Calorimeter

Shashlyk technology Detects photons in the beam pipe Measured inefficiency 3x10⁻⁵

Intermediate Ring Calorimeter

A.Antonelli INFN-LNF

For 1-track sample, need to precisely identify the track as a pion

Three detectors involved:

- The Ringing Image Cherenkov detector
 - Identifies π from μ and electrons
 - Keep the muon contamination below 1% in the 1-track sample up to 35 GeV
- The LKr calorimeter:
 - Allows rejections of e's from semi-leptonic K decays by using the E/p ratio
- The Muon Veto
 - Rejects muon from Kµ2 decay from within the 1-track event sample
 - Required inefficiency ~10⁻⁵

The NA62 RICH detector

Muon veto stations

3 muon veto sections:

Partially by re-using hadron calorimeter from NA48

- MUV1: .
 - 24 planes (iron/scintillator+WLS)
 - 6 cm strips (x-y)
 - 13 ph.el./MIP
- MUV₂:
 - 22 planes (iron+scintillator)
- MUV3: •
 - Fast trigger signals
 - Scintillator pads with direct readout of light in an (air) black box, to suppress reflections and Cerenkov

16

NA62 common DAQ

- Try to use **common** TDAQ board
 - (TEL62, based on LHCb TELL1)
 - HPTDC mezzanine card
- Custom solutions for Liquid Krypton and Gigatracker (too much data!)
- High data bandwidth (≈5 GB/s)
- No zero suppression (for candidate events)

NA62 Trigger

- High trigger efficiency (>95%)
- Low random veto (<1%)
- Fully digital after Front-Ent profit of TEL62
- Level-o implemented in hardware, 10 MHz → 1 MHz
 - e.g. CHOD, RICH minimum multiplicity, Muon veto, LKr, Large angle veto
- Level-1, reconstruction at the level of full sub-detector (→ 100 KHz)
- Level-2 (on full event, → few KHz) implemented in software
 - e.g. vertex out of fiducial volume

Construction schedule

$K \rightarrow \pi v v$ sensitivity summary

Expt	Primary beam	Intensity (ppp)	SM evts/yr	Start date + run yrs	Total SM evts
NA62	SPS 450 GeV	3 × 10 ¹²	55	2014+2	110
FNAL K [±]	Project X 8 GeV	2 × 10 ¹⁴	250	2018+5	1250
ORKA	Tevatron up <150 GeV	5 × 10 ¹³	120	2018+5	600
E14	JPARC-I 30 GeV	2 × 10 ¹⁴	1-2	2013+3?	3-7
E14	JPARC-II 30 GeV	3 × 10 ¹⁴	30	2020+3?	100
FNAL K _L	Booster 8 GeV	2 × 10 ¹³	30	2016+2	60
FNAL K _L	Project X 8 GeV	2 × 10 ¹⁴	300	2018+5	1500

All dates/estimates are speculative, some are more speculative than others

Conclusions

- Flavor physics is a powerful probe for test of SM at high energy
- $K^+ \rightarrow \pi^+ \nu \nu$ very clean mode; sensitivity to New Physics also at high energy scales: complementary to direct searches at LHC
- NA62 detectors have been carefully designed and validated (R&D, tests, Monte Carlo)
- Construction is proceeding steadily
- ... and getting ready to run:
 - Technical run already at the end of year 2012 (without Gigatracker)
 - Physics run planned at SPS restart after long shutdown (2014)

SPARE SLIDES

$R_{\rm K}$ beyond the SM 1 loop

2 Higgs Doublet Models – one-loop level Dominant contribution to ΔR_{K} : H[±] mediated LFV (rather than LFC) with emission of v_{τ} $\rightarrow R_{K}$ enhancement experimentally accessible

$$R_{K}^{LFV} \approx R_{K}^{SM} \left[1 + \left(\frac{m_{K}^{4}}{M_{H^{\pm}}^{4}} \right) \left(\frac{m_{\tau}^{2}}{M_{e}^{2}} \right) \left| \Delta_{13} \right|^{2} \tan^{6} \beta \right]$$

3 unknown parameters: $M_{H\pm}$, Δ_{13} , tan β

PRD 74 (2006) 011701, JHEP 0811 (2008) $\begin{array}{c} 042 \\ \hline S \\ \hline H \\ \hline S \\ \hline H \\ \hline H \\ \hline H \\ \hline S \\ \hline S \\ \hline H \\ \hline H \\ \hline S \\ \hline H \\ \hline H \\ \hline S \\ \hline$

Effect in large tan β regime with a massive H[±]_(Δ_{13} =5×10⁻⁴, tan β =40, M_H=500 GeV/c²) lead to R_K^{MSSM} = R_KSM(1+0.01) ~1% is measurable!

$$R_{K} = \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2})\varepsilon(K_{\mu 2})f_{\mu}}{A(K_{e2})\varepsilon(K_{e2})f_{e}} \cdot \frac{1}{f_{LKr}}$$

$R_{K} = \Gamma(K_{e2}) / \Gamma(K_{\mu 2})$ in the SM

Sensitive to lepton flavor violation and its SM expectation:

$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm}\nu)}{\Gamma(K^{\pm} \to \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{e}^{2}}{m_{\mu}^{2}}\right)$$

 $\left(\frac{m_K^2 - m_e^2}{m_K^2 - m_u^2}\right)^2 \cdot (1 + \delta R_K^{rad.corr.})$

Few % due to: K->ev(γ) IB process

Helicty suppression factor ~10⁻⁵

✓ <u>SM prediction</u>: excellent <u>sub-permille</u> accuracy due to cancellation of hadronic uncertainties.

 \square Measurements of R_K and R_π have long been considered as tests of lepton universality.

Recently understood: helicity suppression of R_K might enhance sensitivity to non-SM

Theoretical expect. (Phys. Lett. 99 (2007) 231801): $R_K^{SM} = (2.477 \pm 0.001) \times 10^{-5}$ (0.04% precision!) $R_\pi^{SM} = (12.352 \pm 0.001) \times 10^{-5}$

Schedule

- Beam line: full system will be installed in 2011.
- Beam Dump: completion expected in 2011.
- Vacuum tank and vacuum system: full system should be available; some pumping units could be staged (depending on number of installed Straw modules).
- CEDAR: full system should be available.
- GTK: the final pixel detectors will not yet be available; possibility to use prototype sensors in the Technical Run.
- LAV: plan to install 10 (or 9) LAV modules. LAV12 will not be ready. If LAV10 is not ready we would install the empty vessel to complete the vacuum tank.
- STRAW: possibility to complete 3 or 4 (out of 8) chamber modules. Chambers 1, 2 and 4 could be equipped with one (instead of two) modules each. The missing modules will be replaced by empty module frames.
- RICH: plan to install the RICH vessel in Spring 2012, including the central beam pipe.
- LKR: the calorimeter will still be read out by the existing electronics (CPD/SLM) but prototypes of the final electronics (CREAM) will be tested.
- CHOD: use the existing NA48 CHOD with prototype read-out.
- MUV: full system.

Gigatracker: the silicon pixel beam detector

Charged veto (CHANTI)

Veto:

- 2 MHz muon halo
- + inelastic interactions
- Triangular shape extruded scintillator bars
- WLS fibers readout + SiPM's
- ≈ 10 ph.el. / MIP
- σ_t < 2 ns

Straw tracker prototype

Straws prototype test:

- 64 straws
- Final mechanics
- Vacuum vessel
- CARIOCA readout electronics
- Pion beam, 120 GeV/c

Liquid Krypton efficiency

A.Antonelli INFN-LNF

30

Monte Carlo: event selection

Cut on reconstructed momentum: 15 < P_{track} < 35 GeV/c

A.Antonelli INFN-LNF

Monte Carlo: cut on m²_{miss}

33

Kaon tagger: differential Cerenkov

- H₂ @ 3.86 bar
- 100 photons/K
- K @ 50MHz
- pprox 250 PMs
- 3MHz/PM
- $\sigma_t < 100 \mathrm{ps}$

LAV readout electronics

Time-over-threshold discriminator: dual threshold

Threshold

Lo trigger rates

gradually add signals on top of the previous

	kHz	CHOD	* RICH	* MUV3	* LKR	* LAV_12	* LAV_AL L
ππ ⁰	1859	1255	1128	1078	200	134	85
Ļļ.V ^e	5719	3786	3376	1	1	1	1
AAA	503	393	379	315	89	89	89
$\pi\pi^0\pi^0$	158	105	97	90	3	1	0
π ⁰ ev	456	265	243	243	41	28	20
π^0 µv	301	195	178	1	1	0	0
ТОТ	8998	5999	5400	1727	334	254	196
πνν (P,Z	cuts) eff. %	93	82	77	75	75	75

Data volume

A.Antonelli INFN-LNF

39

