

Gamma-Ray Bursts in the *Fermi* era

Véronique Pelassa (Univ. of Alabama in Huntsville) on behalf of the *Fermi* GBM and LAT teams

May 31 2012

Vulcano Workshop : Frontiers objects in astrophysics and particle physics

The Fermi observatory Summary of detections Prompt emission specta and light curves High-energy long-lived emission GRB as tools Fermi and future GRB observations

Fermi instruments

The Fermi observatory

Gamma-ray

GRB trigger and observation

GBM:

Gamma-ray Space Telescope

Continuous data are binned in energy and time. Data of higher temporal resolution and tagged time events for triggered events. Trigger: 4 energy ranges (50 – 300keV for GRB), timescales 16ms, 32ms... 4.096s On board localization : ~5° (up to 15°) within a few s (\rightarrow GCN notice) Trigger data available for localization in ~15min, science data within a few hours. On ground human-in-the-loop localization : 2-3° (1° to 10°) within 2h (\rightarrow GCN notice)

GBM is part of the InterPlanetary Network : triangulation by several γ -ray detectors and satellites, box #dimensions depends on #satellites... (\rightarrow GCN circular ~2-3d)

LAT :

Tagged time events from continuous survey, energy and direction reconstructed. On-board trigger : 2 modes (blind or GBM-seeded), searching for clustered tracks. Localization : 0.1° to 0.5° within a few seconds (\rightarrow GCN notice) Autonomous repoint for bright GRB (~1/week in FoV, ~1/month out of FoV) : 2.5hr follow-up with source 10° off-axis (while 20° above horizon). Data for a specific trigger available >8h for localization and further analyses. On-ground localization : 0.1° to 1° (\rightarrow GCN circular)

Prompt emission as seen by Fermi

The Fermi observatory

Gamma-ray

First Fermi GRB catalogs

LAT count map : first 11 months

Green circles : long GBM GRB Orange squares : short GBM GRB From catalog (07/08 –07/10) trigger cat : Paciesas et al. 2012 spec cat : Goldstein et al. 2012 (ApJS 199, articles 18 & 19) http://fermi.gsfc.nasa.gov/ssc/ (soon also at ASDC)

Blue squares : LAT GRB from in prep. catalog (08/08 – 07/11)

GBM : ~250 GRB/yr, ~45/yr are short. 931 triggered GRB as of today. ~1/2 GRB occur within the LAT FoV

LAT : ~10 GRB/yr. 5 short GRB detected so far.

~1/2 follow-up by Swift & ground-based telescopes (GROND, Gemini-S, Gemini-N, VLT) 9 redshift measurements

→ Detection rate lower than expectation, but systematics in extrapolation from BATSE/EGRET are not negligible. We see ~8% of GBM GRB located in the LAT FoV.

Dermi

Gamma-ray Space Telescope

LAT detections: bright bursts

Summary of detections

Space Telescope

"Constraining the high-energy emission from GRB with *Fermi*" (Abdo et al, submitted to ApJ, astro-ph/1201.3948)

Sample of 30 bright undetected bursts within LAT FoV

- \rightarrow 1/2 have predicted LAT flux (GBM fit) > measured LAT UL
- → HE index from GBM+LAT fit softer than in GBM fit : 80% (extrapolated LAT flux lowered, consistent with UL)
- \rightarrow 6 GRB require a spectral attenuation : 20%

Summary of detections

Prompt emission: duration vs E

Prompt emission

Gamma-ray Space Telescope

Short (hard) and long (soft) GRB Sermi

Prompt emission

Gamma-ray

Vulcano 2012

10/23

HE emission delayed onset Sermi

Prompt emission

Gamma-rav

Vulcano 2012

11/23

Empirical fits of GBM spectra

Prompt emission

Gamma-ray

Sermi Nature of the MeV spectrum ?

S. Guiriec et al, 2011, ApJ 727, L33

Spectral fit improved (look at the residuals) by adding a non-dominant Black Body component in several bursts.

While a dominant multicolour BB component can be found in e.g. 090902B (F. Ryde et al, 2009)

Prompt emission

Gamma-ray Space Telescope

The additional powerlaw component...

Dermi

Gamma-ray

...that dominates emission at LE and HE in several GRB

Leptonic models : Inverse Compton, SSC

 X Low-energy excess and delay>variability ??
> Couple internal shocks to photospheric emission ? (Ryde 2010, Toma 2010)

Hadronic models : p synchrotron, hadronic cascades (Asano 2009, Razzaque 2009)

- Low-energy excess (from secondary pairs)
- Late onset (p acceleration and cascade development)
- × Require large B field and larger energy than observed

X What about, say, GRB 090926A spike? (correlated variability at all energies)

Early Afterglow : forward shock pairs' synchrotron (Ghisellini 2010, Kumar 2009)

- Delayed onset
- **x** High variability of prompt emission not reproduced
- **x** Requires high Lorentz factor

Prompt emission

γγ opacity and jet Lorentz factor

$\gamma - \gamma$ opacity constraint

Dermi

Gamma-ray Space Telescope

Maximum photon energy from relativistically moving source is related to its:

- Size: variability timescale
- Bulk Lorentz factor: limit energy higher than for source at rest
- Target photon field spectrum: Band, PL or Band+PL depending on cases

Caveat : target photon field assumed uniform, isotropic, time-independant > More realistic modelling (e.g. Granot 2008) yields significantly (~3 times) lower values Maximum photon energy in LAT Variability timescale from GBM light curve (more statistics) > Robust (modulo caveat) constraints for most GRB Cutoff energy for GRB 090926A > Measurement Γ ~ 200-700 LAT non-detections : 5 unknown z

Prompt emission

Long-lived HE emission Sermi

Long-lived HE emission

Gamma-rav

Multicolour afterglows

Long-lived HE emission

Sermi

Gamma-Ray Bursts for cosmology

GRB as tools

Gamma-ray

Extragalactic Background Light

Extrinsic γ - γ absorption by UV background light Combined study of

Sermi Gamma-ray Space Telescope

AGN and GRB of known redshift

Highest photon energies consistent w/ sources

 \succ « baseline » model from Stecker et al. ruled out at $\sim 3.6\sigma$

GRB as tools

Lorentz Invariance Violation (I)

Some QG models are consistent with Lorentz invariance voliation: $v_{ph}(E_{ph}) \neq c$

$$c^{2} p_{ph}^{2} = E_{ph}^{2} \left[1 + \frac{E_{ph}}{M_{QG,1}c^{2}} + \left(\frac{E_{ph}}{M_{QG,2}c^{2}}\right)^{2} + \dots \right] , \quad v_{ph} = \frac{\partial E_{ph}}{\partial p_{ph}} c \left[1 - \frac{1 + n}{2} \left(\frac{E_{ph}}{M_{QG,n}c^{2}}\right)^{n} \right]$$

A high-energy photon E_h would arrive after (in the sub-luminal case: $v_{ph} < c, s_n = 1$), or possibly before (in the super-luminal case, $v_{ph} > c, s_n = -1$) a low-energy photon E_l emitted together :

$$\Delta t = \frac{(1+n)}{2H_0} \frac{E_h^n - E_l^n}{(M_{\text{QG},n}c^2)^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} \, dz'$$

LAT is more sensitive to linear term n=1

GRB as tools

Space Telescope

Lorentz Invariance Violation (II)

Method 1: assuming a high-energy photon is not emitted before the onset of the relevant low-energy emission episode

Method 2: associating a high-energy photon with a spike in the low-energy light curve that it coincides with

Method 3: DisCan (dispersion cancelation; very robust) – lack of smearing of narrow spikes in high-energy light curve

GRB	Duration (or class)	# of events > 0.1 GeV	# of events >1 GeV	Method	Lower Limit on M _{QG,1} /M _{Planck}	Valid for s _n =	Highest photon energy	Redshift
080916C	long	145	14	1	0.11	1	~ 13 GeV	~ 4.35
				1	1.2, 3.4, 5.1, 10	1		
090510	short	> 150	> 20	2	102	±1	~ 31 GeV	0.903
				3	1.2	±1		
090902B	long	> 200	> 30	1	0.068	1	~ 33 GeV	1.822
090926A	long	> 150	> 50	1,3	0.066, 0.082	1 , 1	~ 20 GeV	2.106

All lower limits M_{QG,1} > M_{Planck} QG models with linear LIV disfavored

GRB as tools

Some perspectives...

Fermi & advanced LIGO – Virgo :

Dermi

Gamma-ray Space Telescope

NS-NS and NS-BH mergers are expected sources of gravitational waves and plausible origins of short GRB (T90<2s)

- \rightarrow complementary : GW \rightarrow inspiral characteristics ; EM \rightarrow jet properties, environment
- \rightarrow Fermi GBM is a good detector of short GRB : 45/yr (on-board triggers)
- \rightarrow finding EM emission coincident with GW triggers enhances merger detections.
- \rightarrow Fermi localization can reduce the search box for a GW trigger's OT
- → ~2/yr coincidental triggers within NS-NS horizon (z<0.11 in Abadie et al. 2010, Class. Quant. Grav. 27: 17300), ~8/yr within NS-BH horizon (z<0.22)</p>

Hope for TeV observations :

High energy photons from LAT GRB

New generation detectors with improved sensitivity :

- \rightarrow CTA (few "own" triggers, repoint on external triggers)
- \rightarrow HAWC (large FoV => "own" triggers,

survey => search for external triggers' counterparts) Caveat : EBL and intrinsic spectral attenuation

Future GRB observations

Fermi is a powerful tool for GRB studies :

The GBM is a prolific detector, the LAT reveals the GeV features of energetic bursts, in good synergy (cooperation) with other instruments(teams) (Swift, IPN, optical telescopes...).

Deeper studies of BATSE & EGRET findings, new findings :

Long-lived high-energy emission... consistent with afterglow models. "The Additional Powerlaw" component... at low and high energies, challenging the models. Richness of the "MeV component" : synchrotron, photosphere, ... Systematically delayed onset of the HE emission \leftrightarrow soft \rightarrow hard (\rightarrow soft) spectral evolution.

Constraints to : Cosmology ? Not yet. But :

The jet's properties : intial $\Gamma \sim$ few hundreds

Lorentz Invariance Violation models : linear models from QG strongly disfavored Extragalactic Backgound Light attenuation models : the most "opaque" scenarii are disfavored

Fermi has an important role in future multi – wavelengths/messengers observations : provide triggers and localizations (GBM) and/or info on (V)HE observation likelihood (LAT)

THANK YOU !!

Data (GBM, LAT, soon also LLE), GRB catalogs, software : <u>http://fermi.gsfc.nasa.gov/ssc/</u> Work by (non)*Fermi* and (non)*Swift* people : <u>http://www.mpe.mpg.de/events/GRB2012/</u>

Fermi GRB