Population of BHs in the Galaxy and in the MCs

INVENTORY OF GALACTIC BHs

• 1 SUPERMASSIVE BH (Sgr A*)

• (zero ÷ few tens ?) of INTERMEDIATE MASS BHs

• 10⁷÷10⁸ STELLAR MASS BHs

From orbits (astrometry & spectroscopy) : $M_{BH} = (4.5 \pm 0.4) \times 10^{6} M_{SUN}$ $D = 8.4 \pm 0.4 \text{ kpc}$

Star S0-16 approaches the focus of the orbit to a distance of ~ 45 A.U. (~ 6 light hours or ~ 600 $\rm R_{S}$)

VLBI observations at 1.3 mm (Doeleman et al., 2008) permitted us to see (for the first time) the structures on the scale of the event horizon!

The measured size (major-axis) of Sgr A* is 37⁺¹⁶-10 µas

Doeleman et al., 2008

A gas cloud on a collision course with Sgr A*

- $M \approx 3M_{E} \approx 1.7 \times 10^{28} \text{ g}.$
- *T* ≈ 550 K.
- e ≈ 0.94 ± 0.01.
- Pericentre distance from the black hole:
 ≈ 3140 ± 240 R_s.
- **Period** ≈ 137 ± 11 yr.
- The predicted X-ray luminosity in mid 2013 of L ~ 10³⁴ erg/s, about 10 times brighter than now.

Gillesen et al. 2012, Burkert et al. 2012

Courtesy A. Zdziarski

The observations:

Cloud evolution simulations (Burkert et al. 2012)

Figure 6. Late phases of the evolution of model CC01. In the year 2050, the cloud has broken up into a long filament that feeds Sgr A*.

History of activity of Sgr A*

GLOBULAR CLUSTERS

Do some of them contain IMBHs ?

Some of them, possibly, yes.

Brightness profiles

clusters with IMBHs have expanded cores ($r_c/r_h > 0.1$)

Trenti (2006) considered a sample of 57 old globular clusters

For at least half of them, he found $r_c/r_h \ge 0.2$

Velocity dispersion

correlates well with M_{BH} (IMBH or SMBH)

Gebhardt et al., 2002

STRONGEST CANDIDATES

G1 M_{BH} ~ 20 000 M_{SUN} Gebhardt et al., 2005
 M15 M_{BH} ~ 2 000 M_{SUN} Gerssen et al., 2003
 ω Cen M_{BH} ~ 50 000 M_{SUN} Noyola et al., 2006

Situation became less favorable for IMBHs.

Recent analysis of the white dwarf (WD) populations in globular clusters suggest that WDs receive a kick of a few km/s shortly before they are born (Fregeau at al., 2009).

This effect increases both r_c/r_h and velocity dispersion.

As of now, no globular cluster requires an IMBH at its center (which does not mean that it does not have one).

NOTE: there are BHs in globular clusters but they are not IMBHs !

STELLAR MASS BHs

BHs in binaries

- non-X-ray binaries
- X-ray binaries

BH candidates from microlensing events

MACHO-96-BLG-5	3 ÷ 16 M _{SUN}	Bennettet et al., 2002a
MACHO-98-BLG-6	3 ÷ 13 M _{SUN}	Bennettet et al., 2002a
MACHO-99-BLG-22		
= OGLE-1999-BUL-32	~ 100 M _{SUN}	Bennettet et al., 2002b
OGLE-SC5_2859	7 ÷ 43 M _{SUN}	Smith, 2003

Some new candidates are investigated (including the use of HST)

BHs in non-X-ray binaries

• WR + unseen companion binaries

• V Pup

There are about twenty WR + unseen companion binaries

Most of them have high values of z-altitude over the Galactic plane, which might indicate that they survived SN explosion

If so, then unseen companions must be relativistic objects

In one of these binaries: CD-45°4482 the lower mass limit of the unseen companion (estimated from radial velocities of WR star) is 5.5 M_{SUN}.

Cherepashchuk, 1998

V Pup

Massive eclipsing binary $P_{orb} = 1^{d}45$, 15.8 + 7.8 M_{SUN}

Cyclic orbital period oscillation indicates the presence of an unseen third body with mass ≥ 10.4 M_{SUN} orbiting the close pair in 5.47 years

Qian et al., 2008

How many BH X-ray binaries ?

at present, we know 64 BHC binaries (62 in MW and 2 in LMC)

8 are HMXBs (6 in MW and 2 in LMC), 56 – LMXBs (all in MW)

23 BHCs have dynamical mass estimates
 (confirmed BHs) (6 in HMXBs, 17 in LMXBs)

13 BHCs are microquasars (4 in HMXBs, 9 in LMXBs)

STELLAR MASS BHs

present range of masses ~ 4 ÷ 16 M_{SUN}

present range of spins ~ 0 ÷ 0.99

X-RAY SPECTRA

GRO J1655-40	a* = 0.93
GRS 1915+105	a* ≈ 1.0
GRO J1655-40	a* = 0.68 ÷ 0.88
LMC X-3	a* < 0.26
GRO J1655-40	a* = 0.65 ÷ 0.80
4U 1543-47	a* = 0.70 ÷ 0.85
LMC X-1	a* = 0.81 ÷ 0.94
GRS 1915+105	a* > 0.98
	GRO J1655-40 GRS 1915+105 GRO J1655-40 LMC X-3 GRO J1655-40 4U 1543-47 LMC X-1 GRS 1915+105

Gou et al. (2011)

Cyg X-1 a* > 0.9

SPECTRAL LINES

MODELING THE SHAPE OF Fe Kα LINE

Miller et al. (2004): GX339-4 $a^* \ge 0.8 \div 0.9$

Miller et al. (2005):GRO J1655-40a* > 0.9XTE J1550-564a* > 0.9

 Miller et al. (2002):
 XTE J1650-500
 a* ≈ 1.0

 Martocchia et al. (2002)
 GRS 1915+105
 small

SUMMARY OF SPIN DETERMINATIONS FROM Fe Kα LINE

a* = 0.05 (1) Cyg X-1 4U 1543-475 a* = 0.3 (1) SAX J1711.6-3808 a* = 0.2 ÷ 0.8 SWIFT J1753.5-0127 $a^* = 0.61 \div 0.87$ **XTE J1908+094** a* = 0.75 (9) **XTE J1550-564** a* = 0.76 (1) a* = 0.79 (1) **XTE J1650-500** a* = 0.94 (2) <u>GX 339 4</u> **GRO J1655-40** a^{*} = 0.98 (1) GRS 1915+105 a* = 0.56 (2)

Miller et al., 2009

Not all groups believe the precision of McC determinations

In particular, corrections for absorption introduce large uncertainty (C. Done)

Also modeling: different spectral models produce different results (Davis, Done & Blaes 2006)

BHs SPINS (stellar mass)

summary based on McC, Miller

- (1) GRS 1915+105 probably has a rotation close to nearly maximal spin (a* > 0.98, but Fe line gives 0.56)
- (2) several other systems (GX 339-4, LMC X-1, GRO J1655-40, XTE J1650-500, XTE J1550-564, XTE J1908+094 and SWIFT J1753.5-0127 have large spins (a* ≥ 0.65)
- (3) not all accreting black holes have large spins (robust (?) result a* < 0.26 for LMC X-3)
- (4) there are discrepancies between the results of two methods (Cyg X-1, GRS 1915+105)

Different populations in MW and in MCs

Population	Galaxy	LMC	SMC	
Total mass (in M _{SMC} units)	100	10	1	
HMXBs Be XRBs	118 72	26 19	83 79	
LMXBs	197	2	-	
BHCs	62	2	-	

In MCs (comparing with MW), we notice:

- lack of LMXBs
- relative surplus of HMXBs
- deficit of BHs

CONFIRMED BHs IN XRBs

Name	P _{orb}	Opt. Sp.	X-R	С	M _{BH} /M _{sun}
Cyg X-1	5 ^d 6	O9.7 lab	pers	μQ	16 ± 3
LMC X-3	1 ^d 70	B3 V	pers		6 ÷ 9
LMC X-1	4 ^d 22	07-9 III	pers		10.9 ± 1.4
SS 433	13 ^d 1	~ A7 lb	pers	μQ	16 ± 3
LS 5039	3 ^d 906	O7f V	pers	μQ	2.7 ÷ 5.0
XTE J1819-254	2 ^d 817	B9 III	т	μQ	6.8 ÷ 7.4
GX 339-4	1 ^d 76	F8-G2 III	RT	μQ	≥ 6
GRO J0422+32	5 ^h 09	M2 V	т		4 ± 1
A 0620-00	7 ^h 75	K4 V	RT		11 ± 2
GRS 1009-45	6 ^h 96	K8 V	т		4.4 ÷ 4.7
XTE J1118+480	4 ^h 1	K7-M0 V	т		8.5 ± 0.6
GS 1124-684	10 ^h 4	K0-5 V	т		7.0 ± 0.6

CONFIRMED BHs IN XRBs (cont.)

Name	Porb	Opt. Sp.	X-R	С	M _{BH} /M _{sun}
GS 1354-645	2 ^d 54	G0-5 III	т		> 7.8 ± 0.5
4U 1543-47	1 ^d 12	A2 V	RT		8.5 ÷ 10.4
XTE J1550-564	1 ^d 55	K3 III	RT	μQ	10.5 ± 1.0
XTE J1650-500	7 ^h 63	K4 V	т	μQ	4.0 ÷ 7.3
GRO J1655-40	2 ^d 62	F3-6 IV	RT	μQ	6.3 ± 0.5
4U 1705-250	12 ^h 54	K5 V	т		5.7 ÷ 7.9
GRO J1719-24	14 ^h 7	M0-5 V	т		> 4.9
XTE J1859+226	9 ^{h1} 6	~ G5	т		8 ÷ 10
GRS 1915+105	33 ^d 5	K-M III	RT	μQ	14 ± 4.4
GS 2000+25	8 ^h 26	K5 V	т		7.1 ÷ 7.8
GS 2023+338	6 ^d 46	K0 IV	RT		10.0 ÷ 13.4