Population of BHs in the Galaxy and in the MCs

INVENTORY OF GALACTIC BHs

1 SUPERMASSIVE BH (Sgr A*)

(zero \div few tens ?) of INTERMEDIATE MASS BHs

$10^{7} \div 10^{8}$ STELLAR MASS BHs

From orbits (astrometry \& spectroscopy) :

$$
\begin{aligned}
& M_{B H}=(4.5 \pm 0.4) \times 10^{6} M_{\text {SUN }} \\
& D=8.4 \pm 0.4 \mathrm{kpc}
\end{aligned}
$$

Star S0-16 approaches the focus of the orbit to a distance of
~ 45 A.U. (~ 6 light hours or ~ 600 R $_{\mathrm{S}}$)

VLBI observations at 1.3 mm (Doeleman et al., 2008) permitted us to see (for the first time) the structures on the scale of the event horizon!

The measured size (major-axis) of Sgr \mathbf{A}^{*} is $\quad 37^{+16}{ }_{-10}$ Has

Doeleman et al., 2008

A gas cloud on a collision course with Sgr \mathbf{A}^{*}

- $M \approx 3 \mathrm{M}_{\mathrm{E}} \approx 1.7 \times 10^{28} \mathrm{~g}$.
- $T \approx 550 \mathrm{~K}$.
- e $\approx 0.94 \pm 0.01$.
- Pericentre distance from the black hole:
$\approx 3140 \pm 240 R_{\mathrm{S}}$.
- Period $\approx 137 \pm 11$ yr.
- The predicted X-ray luminosity in mid 2013 of $L \sim 10^{34} \mathrm{erg} / \mathrm{s}$, about 10 times brighter than now.

Gillesen et al. 2012, Burkert et al. 2012

The observations:

Detection in L but not in K shows it is not a star but a dusty cloud with T~550 K.

Right ascension (arcsec)

Cloud evolution simulations (Burkert et al. 2012)

History of activity of Sgr A*

Murakami et al. 2003

300 years ago milion times brighter!!

IMBHs

GLOBULAR CLUSTERS

Do some of them contain IMBHs ?

Some of them, possibly, yes.

Brightness profiles

clusters with IMBHs have expanded cores (r_{c} / $r_{h}>0.1$)

Trenti (2006) considered a sample of 57 old globular clusters

For at least half of them, he found

 $r_{c} / r_{h} \geq 0.2$IMBHs necessary!

Velocity dispersion

correlates well with $\mathbf{M}_{\mathbf{B H}}$ (IMBH or SMBH)

Gebhardt et al., 2002

STRONGEST CANDIDATES

- [61
- M15
- ω Cen $\mathrm{M}_{\mathrm{BH}} \sim 50000 \mathrm{M}_{\text {SUN }}$

Situation became less favorable for IMBHs.

Recent analysis of the white dwarf (WD) populations in globular clusters suggest that WDs receive a kick of a few km/s shortly before they are born (Fregeau at al., 2009).

This effect increases both r_{c} / r_{h} and velocity dispersion.

As of now, no globular cluster requires an IMBH at its center (which does not mean that it does not have one).

NOTE: there are BHs in globular clusters but they are not IMBHs !

STELLAR MASS BHs

Solitary BHs

BHs in binaries

- non-X-ray binaries
- X-ray binaries

BH candidates from microlensing events

MACHO-96-BLG-5	$3 \div 16 \mathbf{M}_{\text {SUN }}$	Bennettet et al., 2002a
MACHO-98-BLG-6	$3 \div 13 \mathrm{M}_{\text {SUN }}$	Bennettet et al., 2002a
MACHO-99-BLG-22		
= OGLE-1999-BUL-32	$\sim 100 \mathrm{M}_{\text {SUN }}$	Bennettet et al., 2002b
OGLE-SC5_2859	$7 \div 43 \mathrm{M}_{\text {SUN }}$	Smith, 2003

Some new candidates are investigated (including the use of HST)

BHs in non-X-ray binaries

- WR + unseen companion binaries
- V Pup

There are about twenty WR + unseen companion binaries

Most of them have high values of z-altitude over the Galactic plane, which might indicate that they survived SN explosion

If so, then unseen companions must be relativistic objects

In one of these binaries: CD-45ㅇ482 the lower mass limit of the unseen companion (estimated from radial velocities of WR star) is $5.5 \mathrm{M}_{\text {SuN }}$.

Cherepashchuk, 1998

V Pup

Massive eclipsing binary $P_{\text {orb }}=1^{\mathrm{d}} 45, \quad 15.8+7.8 \mathrm{M}_{\text {SUN }}$

Cyclic orbital period oscillation indicates the presence of an unseen third body with mass $\geq 10.4 \mathrm{M}_{\text {sun }}$ orbiting the close pair in 5.47 years

Qian et al., 2008

How many BH X-ray binaries ?

at present, we know 64 BHC binaries (62 in MW and 2 in LMC)

8 are HMXBs (6 in MW and 2 in LMC), 56 LMXBs (all in MW)

23 BHCs have dynamical mass estimates (confirmed BHs) (6 in HMXBs, 17 in LMXBs)

13 BHCs are microquasars (4 in HMXBs, 9 in LMXBs)

STELLAR MASS BHs

- present range of masses $\sim 4 \div 16 \mathrm{M}_{\text {SUN }}$
- present range of spins $\sim 0 \div 0.99$

X-RAY SPECTRA

Zhang et al. (1997):	GRO J1655-40	$a^{*}=0.93$
	GRS 1915+105	$a^{*} \approx 1.0$

Gierliński et al. (2001): GRO J1655-40 a* $=0.68 \div 0.88$

McClintock et al.
(2006, 2009):

LMC X-3	$a^{*}<0.26$
GRO J1655-40	$a^{*}=0.65 \div 0.80$
4U 1543-47	$a^{*}=0.70 \div 0.85$
LMC X-1	$a^{*}=0.81 \div 0.94$
GRS 1915+105	$a^{*}>0.98$

Gou et al. (2011)
Cyg X-1
a* >0.9

SPECTRAL LINES

MODELING THE SHAPE OF Fe K α LINE

Miller et al. (2004):
GX339-4

$$
a^{*} \geq 0.8 \div 0.9
$$

Miller et al. (2005):
GRO J1655-40
a* > 0.9
XTE J1550-564 $a^{*}>0.9$

Miller et al. (2002): XTE J1650-500 a* ≈ 1.0
Martocchia et al. (2002) GRS 1915+105 small

SUMMARY OF SPIN DETERMINATIONS FROM Fe Ka LINE

Cyg X-1
$a^{*}=0.05(1)$
4U 1543-475
$a^{*}=0.3$ (1)
SAX J1711.6-3808
$a^{*}=0.2 \div 0.8$
SWIFT J1753.5-0127
$a^{*}=0.61 \div 0.87$
XTE J1908+094 a* $=0.75$ (9)
XTE J1550-564 $\quad a^{*}=0.76$ (1)
XTE J1650-500 $\quad a^{*}=0.79$ (1)
$6 \times 339-4 \quad a^{*}=0.94$ (2)
GRO J1655-40 $\quad a^{*}=0.98$ (1)
GRS 1915+105 a* $=0.56$ (2)

Miller et al., 2009

Not all groups believe the precision of McC determinations

In particular, corrections for absorption introduce large uncertainty (C. Done)

Also modeling: different spectral models produce different results (Davis, Done \& Blaes 2006)

BHs SPINS (stellar mass)

summary based on McC, Miller

(1) GRS 1915+105 probably has a rotation close to nearly maximal spin ($a^{*}>0.98$, but Fe line gives 0.56)
(2) several other systems (GX 339-4, LMC X-1, GRO J1655-40, XTE J1650-500, XTE J1550-564, XTE J1908+094 and SWIFT J1753.5-0127 have large spins ($\mathrm{a}^{*} \geq 0.65$)
(3) not all accreting black holes have large spins (robust (?) result a* < 0.26 for LMC X-3)
(4) there are discrepancies between the results of two methods (Cyg X-1, GRS 1915+105)

Different populations in MW and in MCs

Population Galaxy LMC

100
10
(in $\mathbf{M}_{\text {SMC }}$ units)

HMXBs
Be XRBs

LMXBs

BHCs

118
72
197
62

26
19
2
2

1
SMC

83 79
■

In MCs (comparing with MW), we notice:

- lack of LMXBs
- relative surplus of HMXBs
deficit of BHs

CONFIRMED BHs IN XRBs

Name
$P_{\text {orb }}$
Opt. Sp. X-R
C
$M_{B H} / M_{\text {sun }}$

Cyg X-1	$5^{\text {d }} 6$	09.7 lab	pers	$\mu \mathrm{Q}$	16 ± 3
LMC X-3	$1{ }^{\text {d70 }}$	B3 V	pers		$6 \div 9$
LMC X-1	$4{ }^{\text {d }} 22$	07-9 III	pers		10.9 ± 1.4
SS 433	$13{ }^{\text {d }} 1$	\sim A7 Ib	pers	$\mu \mathrm{Q}$	16 ± 3
LS 5039	$3^{\text {d }} 906$	O7f V	pers	$\mu \mathrm{Q}$	$2.7 \div 5.0$
XTE J1819-254	$2^{\text {d }} 817$	B9 III	T	$\mu \mathrm{Q}$	$6.8 \div 7.4$
GX 339-4	$1{ }^{\text {d76 }}$	F8-G2 III	RT	$\mu \mathrm{Q}$	≥ 6
GRO J0422+32	$5^{\text {h0 }} 9$	M2 V	T		4 ± 1
A 0620-00	7 h 75	K4 V	RT		11 ± 2
GRS 1009-45	6 h 96	K8 V	T		$4.4 \div 4.7$
XTE J1118+480	$4^{\text {h1 }}$	K7-M0 V	T		8.5 ± 0.6
GS 1124-684	$10^{\text {h }} 4$	K0-5 V	T		7.0 ± 0.6

CONFIRMED BHs IN XRBs (cont.)

Name	$\mathrm{P}_{\text {orb }}$	Opt. Sp.	X-R	C	$\mathrm{M}_{\mathrm{BH}} / \mathrm{M}_{\text {sun }}$
GS 1354-645	2d54	G0-5 III	T		$>7.8 \pm 0.5$
4U 1543-47	$1{ }^{\text {d } 12 ~}$	A2 V	RT		$8.5 \div 10.4$
XTE J1550-564	$1{ }^{\text {d } 55}$	K3 III	RT	$\mu \mathrm{Q}$	10.5 ± 1.0
XTE J1650-500	$7^{\text {h } 63}$	K4 V	T	$\mu \mathrm{Q}$	$4.0 \div 7.3$
GRO J1655-40	$2^{\text {d } 62 ~}$	F3-6 IV	RT	$\mu \mathrm{Q}$	6.3 ± 0.5
4 U 1705-250	$12^{\text {h }} 54$	K5 V	T		$5.7 \div 7.9$
GRO J1719-24	$14^{\mathrm{h}} 7$	M0-5 V	T		> 4.9
XTE J1859+226	$9^{\text {h1 }} 6$	\sim G5	T		$8 \div 10$
GRS 1915+105	$33^{\text {d }}$	K-M III	RT	$\mu \mathrm{Q}$	14 ± 4.4
GS 2000+25	$8^{\text {h } 26 ~}$	K5 V	T		$7.1 \div 7.8$
GS 2023+338	$6^{\text {d }} 46$	K0 IV	RT		$10.0 \div 13.4$

