

TeV Gamma Rays: Observations versus Expectations (Theory)

Frank Krennrich, Iowa State University

Key Questions

- Origin of cosmic particles and cosmic rays?
- How do cosmic particle accelerators work? How efficient?
- How transparent is the universe?
- What is the spectrum of the Extragalactic Background Light?

Air Cherenkov Technique: Whipple 10m

Air Cherenkov Technique: Stereo: VERITAS, HESS

shower height

shower core location

 $\Delta E/E < 15\%$

Cosmic Accelerators

- M82 is the prototype starburst galaxy
- Distance ~ 3.9 Mpc
- Diameter ~ 1' (0.016°)
- SMBH ~ $3 \times 10^7 M_{solar}$ (no activity)
- Interacts with group of galaxies (M81)
- Hubble ST: 200 massive star clusters
- High supernova rate ~ 0.1 0.3 per year
- Moderate gas density 150 particles/cm³

-> excellent candidate for cosmic ray interactions & gamma ray emission.

-> probing paradigm that SNRs are the origin of C.R.s.

VERITAS data ~ 137 h livetime

only astronomical dark time, large zenith angle ~ 39° increased E_{thres} bad weather removed

Standard VERITAS analysis ("hard cuts")

Et_{hres} ~ 700 GeV cuts a priori optimized on Crab hard spectrum expected from theory but we count for 3 trials (standard, hard & soft)

• Point-like excess of 91 γ ; 5.0 σ (pre-trial)

3 independent analyses many systematic checks performed

• Post-trial: 4.8 σ

steady signal excess consistent with instrument PSF

M82 weakest source ever detected @ VHE

0.9% of Crab Gamma-ray rate: 0.7 γ/hour

Acciari et al. (VERITAS Collab.), Nature, 462, 770 (2009) Abdo et al. (Fermi Collab.), arXiv:0911.5327 B. Schwarzschild, Physics Today, vol. 63, p 13 (2010)

Acero et al. (HESS Collab.), Science, 326, 1080 (2009) Abdo et al. (Fermi Collab.), arXiv:0911.5327 Expectation: $dN/dE \sim E^{-2}$ Fermi (1 – 20 GeV): $dN/dE \sim E^{-1.95 \pm 0.4}$ HESS (0.3 – 5 TeV): $dN/dE \sim E^{-2.14 \pm 0.18}$

Ohm et al. (HESS Collab.), ICRC Beijing (2011)

Abdo et al. (Fermi Collab.), arXiv:0911.5327 Lacki et al., arXiv:1003.3257v3

Conclusions:

Expectation: Flux

- uncertainties in SN rate ~ 0.08 0.3/yr
- conversion efficiency of p to pions

(t_{π} vs. t_{p-esc} (advection, diffusion)

- M82 a "proton calorimeter" as $t_{\pi} \sim t_{adv}?$

Caveats:

- short t_{adv} due to fast wind
 v ~ 1,000 2,000 km/s
- long t_{π} if CR travel mostly through low density gas
- GeV/TeV spectra consistent with typical CR injection spectra
- either "proton calorimetry" or advective losses dominate

Cosmic Ray Accelerators In Bulk

Abdo et al. (Fermi Collab.), arXiv:0911.5327

*Milky Way γ-ray luminosity based on estimates of gas density, pion decay, inverse Compton & bremsstrahlung photons

Future steps:

- better GeV/TeV spectra for M82, NGC253
- ULIRGs (Arp 220) to test high gas density ... (proton calorimetry)

Aharonian et al. (HESS Collab.), A&A, 449, 223 (2006)

- electron acceleration
- inverse Compton scattering e + $\gamma \rightarrow$ e + γ

- proton acceleration
- $-p + p \rightarrow \pi^0 + \pi^+ + \pi^- + \dots$

- known Type Ia SN, age = 439 y.
- X-ray filaments of non-thermal
 → electron acceleration
- shell-like morphology
- northeastern ridge expanding at slower rate
 → interaction with molecular cloud
- molecular cloud seen in HI and CO.
- one of the best contenders for hadronic accel.
- distance ~ 2.5 4.5 kpc

- energy spectrum hard.
- simple leptonic+hadronic model.
- radio/X-ray for normalization.
- IC(CMB) & pion decay.
- leptonic → 78 uG
- hadronic → 230 uG
 - → magnetic field amplification in shocks!

Galactic Longitude (deg)

Morlino & Caprioli, arXiv:1105:6342v1 Giordano et al., ApJL, 744, L2 (2012)

Conclusion:

- power law: 500 MeV 5 TeV: "looks" hadronic?
- reduce statistical uncertainties with Fermi/VERITAS
- search for pion cutoff (difficult analysis)

Summary: Cosmic Ray Origin

- Starburst galaxy spectra & fluxes compatible with predictions!
 - \rightarrow proton calorimetry with objects of higher gas density
 - \rightarrow correlation analysis with a range of objects
 - \rightarrow extend spectra to ~ 100 TeV
- SNRs as cosmic ray accelerators compatible with observations
 - → population studies of SNRs efficiency of acceleration process
 - \rightarrow search for SNRs with spectra up to 100 TeV
 - \rightarrow high energy cutoffs related to age of SNR?

Cosmological Sources

TeV γ-ray Sky 2012

extragalactic sources

	Class	redshift	_
Centaurus A	R. G.	0.0008	
M82	S.B.G.	0.00085	
NGC253	S.B.G.	0.00093	
M87	R. G.	0.0036	
NGC 1275	R. G.	0.018	
IC 310	R. G.	0.0188	
Markarian 421	HBL	0.031	
Markarian 501	HBL	0.034	
1ES 2344+514	HBL	0.044	
Markarian 180	HBL	0.046	
1ES 1959 + 650	HBL	0.047	
AP Lib*	LBL	0.048	
BL Lacertae	LBL	0.069	
PKS 2005-489	HBL	0.071	
W Comae	IBL	0.103	
PKS 2155-304	HBL	0.116	
B3 2247+381	HBL	0.119	
RGB J0710+591	HBL	0.125	
H 1426+428	HBL	0.129	
1ES 1215+303	IBL	0.13^{\heartsuit}	
1ES 0806+524	HBL	0.137	
1RXS J101015.9-311909	HBL	0.143	ס
1ES 1440+122	IBL	0.163	Ð
H 2356-309	HBL	0.165	U
VER J0648+152	HBL	0.179	မြ
1ES 1218+304	HBL	0.184	
1ES 1101-232	HBL	0.186	e e
RBS 0413	HBL	0.19	
PKS-0447-439	HBL	0.205	
1ES 1011+496	HBL	0.212	
1ES 0414+009	HBL	0.287	
$S5\ 0716+714$	LBL	0.31	
1ES 0502+675	HBL	0.416	
4C 21.35	FSRO	0.43	
	IBL	0.44	
3C 66A		0.11	

γ -ray Absorption by the EBL $\varepsilon \approx 2 \cdot \varepsilon_{th}$ 2.0 $\varepsilon \approx 1.5 \cdot \varepsilon_{th}$ $\mathcal{E} \thickapprox$ $4 \cdot \varepsilon_{th}$ 1.5 $\sigma_{\gamma\gamma}(\beta)~(10^{-25}~{\rm cm}^2)$ e 1.0 e^+ 0.5 0.0 1.0 0.0 0.2 0.4 0.6 0.8 $\beta =$ th ' $\varepsilon_{th}(E_{\gamma},\mu,z) = \frac{2(m_e c^2)^2}{E_{\gamma}(1-\cos\theta)}$ cross section effective over a broad range of target photon energies (for a given E_{γ})

$$\sigma_{\gamma\gamma}(E_{\gamma},\varepsilon,\mu,z) = \frac{3\sigma_T}{16}(1-\beta^2)f(\beta)$$

• cross section peaks at
$$\beta$$
 = 0.7

$$E_{\gamma}[TeV] = \frac{0.86\lambda[\mu m]}{1 - \cos\theta}$$

γ -ray Absorption by the EBL

γ-ray Absorption by the EBL

Consider special case: absorption by a black body photon gas with peak at 1 μ m

γ-ray Absorption by the EBL

γ-ray Absorption by the EBL

Sources for probing the EBL

		-		-	
Name	Class	redshift	α_{GeV}	α_{TeV}	Range [TeV]
Centaurus A	R. G.	0.0008	2.76 ± 0.05	2.7 ± 0.5	0.2 - 5
M82	S.B.G.	0.00085	2.2 ± 0.2	2.5 ± 0.6	0.7 - 4
NGC253	S.B.G.	0.00093	1.95 ± 0.4	2.14 ± 0.18	0.3 - 50
M87	R. G.	0.0036	2.17 ± 0.07	2.5 ± 0.2	0.2 - 10
NGC 1275	R. G.	0.018	2.00 ± 0.02	3.96 ± 0.37	0.1 - 0.3
IC 310	R. G.	0.0188	2.10 ± 0.19	2.0 ± 0.14	0.1 - 7
Markarian 421	HBL	0.031	1.77 ± 0.01	$2.48\pm0.03*$	0.1 - 5
Markarian 501	HBL	0.034	1.74 ± 0.03	$2.51\pm0.05^{\triangle}$	0.1 - 10
1ES 2344+514	HBL	0.044	1.72 ± 0.08	$2.78 \pm 0.09^{\triangle}$	0.3 - 2
Markarian 180	HBL	0.046	1.74 ± 0.08	3.3 ± 0.70	0.2 - 1
1ES 1959+650	HBL	0.047	1.94 ± 0.03	2.72 ± 0.14	0.2 - 2
AP Lib*	LBL	0.048	2.05 ± 0.04	2.5 ± 0.2	0.3 - 2
BL Lacertae	LBL	0.069	2.11 ± 0.04	3.6 ± 0.5	0.2 - 1
PKS 2005-489	HBL	0.071	1.78 ± 0.05	4.0 ± 0.4	0.2 - 2
W Comae	IBL	0.103	2.02 ± 0.03	3.81 ± 0.35	0.3 - 1
PKS 2155-304	HBL	0.116	1.84 ± 0.02	3.53 ± 0.05	0.4 - 5
B3 2247+381	HBL	0.119	1.84 ± 0.11	3.2 ± 0.5	0.2 - 1
RGB J0710+591	HBL	0.125	1.53 ± 0.12	2.69 ± 0.26	0.3 - 4.6
H 1426+428	HBL	0.129	1.32 ± 0.12	3.50 ± 0.35	0.3 - 10
1ES 1215+303	IBL	0.13°	2.02 ± 0.02	2.99 ± 0.15	0.1 - 1
1ES 0806+524	HBL	0.137	1.94 ± 0.06	3.6 ± 1.0	0.3 - 0.7
1RXS J101015.9-311909	HBL	0.143	2.24 ± 0.14	3.14 ± 0.53	0.3 - 1
1ES 1440+122	IBL	0.163	1.41 ± 0.18	3.3 ± 0.7	0.3 - 1
H 2356-309	HBL	0.165	1.89 ± 0.17	3.09 ± 0.24	0.3 - 2
VER J0648+152	HBL	0.179	17410.11	1110.0	0.3 - 0.8
1ES 1218+304	HBL	0.184	1.71 ± 0.07	3.07 ± 0.09	0.2 - 2
1ES 1101-232	HBL	0.186	1.00-0071	2.00-0.11	0.16 - 3.3
RBS 0413	HBL	0.19	1.55 ± 0.11	3.18 ± 0.68	0.25 - 1
PKS-0447-439	HBL	0.205	1.86 ± 0.02	4.36 ± 0.49	0.25 - 1
1ES 1011+496	HBL	0.212	1.72 ± 0.04	4.0 ± 0.50	0.25 - 0.6
1ES 0414+009	HBL	0.287	1.98 ± 0.16	3.44 ± 0.27	0.25 - 1.2
S5 0716+714	LBL	0.31	2.01 ± 0.02	3.45 ± 0.54	0.25 - 1.2
1ES 0502+675	HBL	0.416^{-1}	1.49 ± 0.07	3.92 ± 0.35	0.25 - 1
4C 21.35	FSRQ	0.43	2.12 ± 0.02	3.75 ± 0.27	0.07 - 0.4
3C 66A	IBL	0.44^{-1}	1.85 ± 0.02	4.1 ± 0.4	0.22 - 0.45
3C 279	FSRQ	0.536	2.22 ± 0.02	3.03 ± 0.9	0.1 - 0.35

Do we see spectral softening (z)?

- 3 dozen extragalactic sources (blazars, few radio & starburst galaxies)
- Spectra ~ 1 GeV 1 TeV
- redshift (known for 50% of BL Lacs)

Sources for probing the EBL

Name	Class	redshift	α_{GeV}	α_{TeV}	Range [TeV]
Centaurus A	R. G.	0.0008	2.76 ± 0.05	2.7 ± 0.5	0.2 - 5
M82	S.B.G.	0.00085	2.2 ± 0.2	2.5 ± 0.6	0.7 - 4
NGC253	S.B.G.	0.00093	1.95 ± 0.4	2.14 ± 0.18	0.3 - 50
M87	R. G.	0.0036	2.17 ± 0.07	2.5 ± 0.2	0.2 - 10
NGC 1275	R. G.	0.018	2.00 ± 0.02	3.96 ± 0.37	0.1 - 0.3
IC 310	R. G.	0.0188	2.10 ± 0.19	2.0 ± 0.14	0.1 - 7
Markarian 421	HBL	0.031	1.77 ± 0.01	$2.48\pm0.03^{*}$	0.1 - 5
Markarian 501	HBL	0.034	1.74 ± 0.03	$2.51 \pm 0.05^{\triangle}$	0.1 - 10
1ES 2344+514	HBL	0.044	1.72 ± 0.08	$2.78 \pm 0.09^{\triangle}$	0.3 - 2
Markarian 180	HBL	0.046	1.74 ± 0.08	3.3 ± 0.70	0.2 - 1
1ES 1959+650	HBL	0.047	1.94 ± 0.03	2.72 ± 0.14	0.2 - 2
AP Lib*	LBL	0.048	2.05 ± 0.04	2.5 ± 0.2	0.3 - 2
BL Lacertae	LBL	0.069	2.11 ± 0.04	3.6 ± 0.5	0.2 - 1
PKS 2005-489	HBL	0.071	1.78 ± 0.05	4.0 ± 0.4	0.2 - 2
W Comae	IBL	0.103	2.02 ± 0.03	3.81 ± 0.35	0.3 - 1
PKS 2155-304	HBL	0.116	1.84 ± 0.02	3.53 ± 0.05	0.4 - 5
B3 2247+381	HBL	0.119	1.84 ± 0.11	3.2 ± 0.5	0.2 - 1
RGB J0710+591	HBL	0.125	1.53 ± 0.12	2.69 ± 0.26	0.3 - 4.6
H 1426+428	HBL	0.129	1.32 ± 0.12	3.50 ± 0.35	0.3 - 10
1ES 1215+303	IBL	0.13°	2.02 ± 0.02	2.99 ± 0.15	0.1 - 1
1ES 0806+524	HBL	0.137	1.94 ± 0.06	3.6 ± 1.0	0.3 - 0.7
1RXS J101015.9-311909	HBL	0.143	2.24 ± 0.14	3.14 ± 0.53	0.3 - 1
1ES 1440+122	IBL	0.163	1.41 ± 0.18	3.3 ± 0.7	0.3 - 1
H 2356-309	HBL	0.165	1.89 ± 0.17	3.09 ± 0.24	0.3 - 2
VER J0648+152	HBL	0.179	17110.11	1110.0	0.3 - 0.8
1ES 1218+304	HBL	0.184	1.71 ± 0.07	3.07±0.09	0.2 - 2
1ES 1101-232	HBL	0.186	1.00-0071	2.0010.11	0.16 - 3.3
RBS 0413	HBL	0.19	1.55 ± 0.11	3.18 ± 0.68	0.25 - 1
PKS-0447-439	HBL	0.205	1.86 ± 0.02	4.36 ± 0.49	0.25 - 1
1ES 1011+496	HBL	0.212	1.72 ± 0.04	4.0 ± 0.50	0.25 - 0.6
1ES 0414+009	HBL	0.287	1.98 ± 0.16	3.44 ± 0.27	0.25 - 1.2
S5 0716+714	LBL	0.31	2.01 ± 0.02	3.45 ± 0.54	0.25 - 1.2
1ES 0502+675	HBL	0.416	1.49 ± 0.07	3.92 ± 0.35	0.25 - 1
4C 21.35	FSRQ	0.43	2.12 ± 0.02	3.75 ± 0.27	0.07 - 0.4
3C 66A	IBL	0.44^{-1}	1.85 ± 0.02	4.1 ± 0.4	0.22 - 0.45
3C 279	FSRQ	0.536	2.22 ± 0.02	3.03 ± 0.9	0.1 - 0.35

Sources for probing the EBL

- "typical" blazar SED: synchrotron peak inverse Compton peak
- SSC model: generally does not allow precise prediction of IC peak!

Methods I: no exponential rise!

- consider range of EBL scenarios with different near-IR, mid-IR far-IR intensities
- consistent with limits (2005)
- use to unfold absorption-corrected blazar spectra
- exponential rise: → EBL intensity is too high ¥

Methods I: no exponential rise!

- only 1 EBL scenario with moderately high mid-IR but extremely high near-IR remains!
- strong upper limit: vI_v (60 μ m) < 15 nW/m²/sr

multi-TeV data sensitive to mid-IR

Methods I: no exponential rise!

Method II: hardness limit $\Gamma > 1.5$

- EBL intensity near-IR (1 4 μm) is constrained by allowing absorption-corrected spectra with Γ > 1.5 only!
- strong upper limit in near-IR: vI_v (1-2 μ m) < 14 ± 0.4 nW/m²/sr
- dependents on assumed intrinsic source spectrum! ($\Gamma \sim 1.2$ Fermi spectra!)

More comprehensive analysis is given in Mazin, D. & Raue M., A&A, 471, 439 (2007)

Method III, part I: $\Gamma_{TeV} > \Gamma_{GeV}$

1ES 1218+304: z = 0.182 1ES 1101-232: z = 0.186 RGB J0710+591: z = 0.125 1ES 0229+200: z = 0.13

Orr, M., F.K. & Dwek, E., ApJ, 733, 77 (2011)

- simultaneous EBL constraints in near-IR & mid-IR
- requires distant sources ($z \sim 0.1 0.3$) with hard spectra
- Fermi spectral index used to set upper limit in near-IR
- use Fermi spectra combined with multi-TeV spectra

May 30 2012

Method III, part II: 1 TeV break

- shape of EBL may produce unique imprint in TeV spectra
- effect would be very strong in purely thermal photon field
- strength depends on ratio of near-IR to mid-IR
- constant tau (1 10 TeV): the observed spectrum ≈ intrinsic source spectrum

Method III, part II: 1 TeV break

Source Name	Redshift	Γ _{LAT}	Γντς	Method(s)	# Spec. Points I.t./g.t. E _{break}
1ES 2344+514	0.044	1.57 ± 0.17	2.95 ± 0.12	TeV Break	4/3
1ES 1959+650	0.047	2.10 ± 0.05	2.58 ± 0.18	TeV Break	4 / 2
PKS 0548-322	0.069	-	2.8 ± 0.3	TeV Break	3/2
PKS 2005-489	0.071	1.90 ± 0.06	4.0 ± 0.4	TeV Break	6/3
RGB J0152+017	0.080	-	2.95 ± 0.36	TeV Break	4/2
PKS 2155-304	0.117	1.91 ± 0.02	3.32 ± 0.06	TeV Break	7/3
RGB J0710+591	0.125	1.28 ± 0.21	2.69 ± 0.26	GeV-TeV / TeV Break	3 /2
H 1426+428	0.129	1.49 ± 0.18	3.50 ± 0.35	TeV Break	3 / 4
1ES 0229+200	0.140	-	2.50 ± 0.19	GeV-TeV / TeV Break	3 / 5
1ES 1218+304	0.182	1.69 ± 0.07	3.07 ± 0.09	GeV-TeV / TeV Break	7/2
1ES 1101-232	0.186	1.61 ± 0.26	2.88 ± 0.17	GeV-TeV / TeV Break	9 / 4
1ES 0347-121	0.188	-	3.10 ± 0.23	TeV Break	4/3

Method III: part I+II (Data)

- part I and part II are "orthogonal"
- constrain near-IR to mid-IR ratio!
- considering lower limits (direct), also constrains absolute level!

Method III:

Summary of EBL limits from γ-rays

Summary of EBL limits from γ-rays

EBL: Summary

- TeV γ-ray data provide strong constraints to the near-IR and mid-IR
- Range of methods (assumptions) yield comparable results
- > 35 sources with GeV TeV spectra: better constraints!
- Potential for a unique signature from EBL absorption ~ 1 TeV
- Deep exposures (100h VERITAS-II) required to achieve sensitivity
- precision measurements of absorption effects likely with CTA
- potential for using different classes of sources:

hard spectra BL Lacs: $\langle z \rangle \sim 0.3 \rightarrow \text{near-IR} + \text{mid-IR}$ radio galaxies: nearby $\rightarrow \text{mid-IR} + \text{far-IR}$ SB galaxies: nearby $\rightarrow \text{mid-IR} + \text{far-IR}$ FSRQs: likely to extent to $z \sim 1$