LaboratoryUndergroundNuclearAstrophysicsThe D(4He,γ)6Li at LUNA and BBNCarlo GustavinoFor the LUNA collaboration

LUNA and the Big Bang Nucleosynthesis
The Lithium problem
The D(<sup>4</sup>He,γ)<sup>6</sup>Li measurement at LUNA
Conclusions

## LUNA VS BBN

In the standard scenario, the primordial abundance of light elements depends ONLY on: •Barionic density  $\omega_b$  (measured by CMB experiments at the level of %) •Standard Model ( $\tau_n$ ,  $\nu$ ,  $\alpha_..$ ) •Nuclear astrophysics, i.e. cross sections of nuclear reactions in the BBN chain

The LUNA measurements are performed at LNGS, with the unique accelerator in the world operating underground.

Here, the background induced by cosmic rays is orders of magnitude lower than outside. The Low background at LNGS makes possible to study Nuclear reactions well below the coulomb barrrier.

In particular, the BBN reactions can be studied in the region of interest, giving a direct experimental footing to calculate the abundances of primordial isotopes.

Already measured by LUNA:  $P(D,\gamma)^{3}He$  (Deuterium abundance)  $^{3}He(^{4}He,g)^{7}Be$  (<sup>7</sup>Li abundance)  $^{3}He(D,p)^{4}He$  (<sup>3</sup>He abundance) This talk:  $D(^{4}He,\gamma)^{6}Li$  (<sup>6</sup>Li abundance)



## The Lithium Problem(s)

Basic Concepts to unfold primordial abundances •Observation of a set of primitive objects (born when the Universe was young)

•Extrapolate to zero metallicity:

Fe/H, O/H, Si/H ----> 0

### Lithium observations

•<sup>7</sup>Li primordial abundance: observation of the absorption line at the surface of metal-poor stars in the halo of our Galaxy

•<sup>6</sup>Li abundance : observation of the asymmetry of the <sup>7</sup>Li absorption line.



## The Lithium Problem(s)

#### **Observational Results:**

•Observed <sup>7</sup>Li abundance is 2-3 times lower than foreseen (Spite Plateau): Well established "<sup>7</sup>Li problem".

•Observed <sup>6</sup>Li abundance is orders of magnitude higher than expected (Asplund 2006)

•However the "Second Lithium problem" is debated, because convective motions on the stellar surface can give an asymmetry of the absorption line, mimicking the presence of <sup>6</sup>Li.



For more details: "Lithium in the Cosmos", 27-29 february, Paris

# D(<sup>4</sup>He, $\gamma$ )<sup>6</sup>Li

The <sup>6</sup>Li abundance in metal-poor stars is very large (Asplund et al. 2006) compared to BBN predictions (NACRE compilation). The possible reasons are:

•Systematics in the <sup>6</sup>Li observation in the metal-poor stars

•Unknown <sup>6</sup>Li sources older than the birth of the galaxy

•New physics, i.e. sparticle annihilation/decay (Jedamzik2004), long lived sparticles (Kusakabe2010),...

•...Lack of the knowledge of the  $D(^{4}He,\gamma)^{6}Li$  reaction.

#### IN FACT:

NO DIRECT MEASUREMENTS in the BBN energy region in literature (large uncertainty due to extrapolation)

INDIRECT coulomb dissociation measurements (Kiener91, Hammache2010) are not reliable because the nuclear part is dominant.

FOR FIRST TIME, LUNA has studied the D  $({}^{4}\text{He},\gamma){}^{6}\text{Li}$  reaction well inside the (most interesting part of) BBN energy region.



# Gran Sasso National Laboratory (LNGS)



# The LUNA (400 kV) accelerator



<sup>14</sup>N(p,γ)<sup>15</sup>O
<sup>3</sup>He(<sup>4</sup>He,γ)<sup>7</sup>Be
<sup>25</sup>Mg(p,γ)<sup>26</sup>Al
<sup>15</sup>N(p,γ)<sup>16</sup>O
<sup>17</sup>O(p,γ)<sup>18</sup>F
D(<sup>4</sup>He,γ)<sup>6</sup>Li
<sup>22</sup>Ne(p,γ)<sup>23</sup>Na

Voltage Range: 50-400 kV Output Current: 1 mA (@ 400 kV) Absolute Energy error: ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp

A. Formicola et al., NIMA 527 (2004) 471.



### Beam Induced Background origin



# D(<sup>4</sup>He, $\gamma$ )<sup>6</sup>Li set-up

•Germanium detector close to the beam line to increase the detection efficiency •Pipe to reduce the path of scattered deuterium, to minimize the d(d,n)<sup>3</sup>He reaction yield •Target length optimized

•Copper removal

Silicon detector to monitor the neutron production through the d(d,p)<sup>3</sup>H protons
Lead, Radon Box to reduce and stabilize Natural Background



# Neutron flux inside LNGS (GEANT Calculation)



## Beam Induced Background and Natural Background



### Measurement strategy:

-The shape of Beam Induced Background spectra weakly depends on the  $\alpha$ -beam energy. -The Energy of  $\gamma$ 's coming from D+alpha reaction are kinematically constrained by the following relationship:

### $E\gamma = 1473, 48 + E_{cm} \pm \Delta E_{doppler}$

- 1. Measurement with  $E_{beam}$ =400 keV on  $D_2$  target. The Ge spectrum is mainly due to background induced by neutrons interacting with the surrounding materials (Pb, Ge, Cu). The  $D(\alpha,\gamma)^6$ Li signal is expected in a well defined energy region (1587–1625 keV).
- 2. Same as 1., but with  $E_{beam}$ =280 keV. The Ge spectrum is essentially the same as before, while the gammas from the  $D(\alpha,\gamma)^6$ Li reaction are expected at 1550–1580 keV.  $D(\alpha,\gamma)^6$ Li Signal is obtained by subtracting the two spectra



## Preliminary Results (E<sub>lab</sub>=400/280 keV)



Counting excess observed in the  $E_{cm}$ =134 keV ROI (red band) 13

### Preliminary Results (E<sub>lab</sub>=360/240 keV)



Counting excess shifted to the E<sub>cm</sub>=120 keV ROI (violet band) 14

### Conclusion

Three independent analysis are now in progress, showing a counting excess compatible with the D+alpha signal.

LUNA data exclude a nuclear solution for the <sup>6</sup>Li problem. The observation of a "huge" amount of <sup>6</sup>Li in metal-poor stars must be explained in a different way.

The  $D(\alpha,\gamma)^6Li$  reaction has been studied at BBN energies. The LUNA measurement provides for the first time a solid experimental footing to calculate the <sup>6</sup>Li primordial abundance

# Extra Slides



### D+alpha cross section (GSI)





D+ALPHA SIMULATED SPECTRA

•The D+alpha peak width depends on geometry:  $E\gamma = 1473,48 + E_{cm} \pm \Delta E_{doppler}$ •Spectra of <sup>137</sup>Cs, <sup>60</sup>Co, <sup>88</sup>Y sources placed along the beam line to calibrate the Ge efficiency





| Roberto                                  | Carlo G.                                                          | Micha                                    |  |
|------------------------------------------|-------------------------------------------------------------------|------------------------------------------|--|
| beam induced background subtraction      | beam induced background subtraction                               | beam induced background subtraction      |  |
| energy dependend<br>normalization factor | constant normalization factor                                     | energy dependent<br>normalization factor |  |
| channel-by-channel<br>analysis           | channel-by-channel analysis,<br>expected signal shape<br>included | flat region approach                     |  |
| Excel                                    | ROOT/MINUIT                                                       | Origin/Gnuplot                           |  |

| E <sub>lab</sub> (keV) | ROlγ(keV) | S (counts/day) | Noise (counts/day)               | N/S  |
|------------------------|-----------|----------------|----------------------------------|------|
|                        |           |                | 35 keV window,<br>0,3mbar, 300uA |      |
| 160                    | 1527±17,5 | 0,45           | 848                              | 1886 |
| 230                    | 1550±17,5 | 6,09           | 896                              | 147  |
| 280                    | 1567±17,5 | 13,9           | 701                              | 50   |
| 350                    | 1590±17,5 | 31,3           | 609                              | 19   |
| 400                    | 1607±17,5 | 42             | 659                              | 16   |

"GOOD" SIGNAL/NOISE RATIO AT Elab = 350 keV



YELLOW: NATURAL BCK BLUE:BIB@400kV(natural BCK subtracted) VIOLET: BIB@360kV (natural BCK subtracted) POINTS: SIGNAL (A.U.) at 160,230,280,350,400 keV