Cosmic Rays and

Hadronic Interactions

VULCANO workshop Frontiers objects in Astrophysics and Particle physics

PARTICLE PHYSICS

COSMIC RAYS ASTROPHYSICS

100 years of **Cosmic Rays**

Extensive Cosmic-Ray Showers

PIERRE AUGER In collaboration with P. Ehrenfest, R. Maze, J. Daudin, Robley, A. Fréon Paris, France

Extensive Air Showers

AUGER detector in ARGENTINA

And I THE REPORT OF THE REPORT OF THE REPORT OF THE

100

-

I TROPAGE AND A STATE

The Pierre Auger Observatory

Argentina, Mendoza, Malargue 1.4 km altitude, 870 g/cm²

Argentina
Australia
Bolivia'
Brazil
Czech Republic
France
Germany
Italy

Mexico Netherlands Poland Slovenia Spain United Kingdom USA Vietnam

1.5 km spacing, 3000 km², 4 x 6 fluorescence telescopes

TOTEM collaboration at LHC:

First measurement of the total proton-proton cross section at the LHC energy of $\sqrt{s} = 7 \text{ TeV}$

$$\sigma_{\text{tot}} = [98.3 \pm 0.2 \text{ (stat)} \pm 2.8 \text{ (syst)}] \text{ mbarn}$$

$$\sigma_{\text{el}} = [24.8 \pm 0.2 \text{ (stat)} \pm 1.2 \text{ (syst)}] \text{ mbarn}$$

$$\sigma_{\text{inel}} = [73.5 \pm 0.6 \text{ (stat)} \ ^{+1.8}_{-1.2} \text{ (syst)}] \text{ mbarn}$$

$$B_{\text{el}} = [20.1 \pm 0.2 \text{ (stat)} \pm 0.3 \text{ (syst)}] \text{ GeV}^{-2}$$

$$\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} = 0.25 \pm 0.01 \text{ (stat} \oplus \text{sys)}$$

Description of ULTRA High Energy Cosmic Rays SHOWERS

Need description of hadronic interactions beyond LHC energies

Auger surface detector

How can one estimate the energy ?

ID 762238

Timing of tank-signals give shower direction

VEM = Vertical-Equivalent-Muon

The **Fly's Eye** Detector concept

Fluorescence light emitted isotropically by excited Nitrogen molecules

Yield ~ 4 photons/meter 300-400 nm

The Auger 'hybrid' detector

Calibration of Surface detector With fluorescence light observations

SD Energy resolution better than 20%

AUGER Energy Spectrum

AUGER Energy Spectrum

Area \propto Energy

Shape depends on :Primary Identity

Interaction Model

Study of the mass composition of Ultra High Energy Cosmic Rays

intimately associated with the modeling of hadronic-interactions.

Interplay:

Mass Composition

Hadron interaction lengths in air

Properties of particles in the final state

 $\langle X_{\rm max} \rangle$ and RMS

What is the physical meaning of these distributions? $\langle \textit{X}_{max} \rangle$ and RMS

Compare DATA with predictions based on several assumptions for hadronic interactions....

One Montecarlo Model: [Sibyll 2.1]

 $\langle X_p^{\max}(E) \rangle \simeq X_0 + D_p \log E$

Small curvature

\boldsymbol{X}_{max} and the Composition of Cosmic Rays

IF: approximate validity of the relation:

 $\langle X_A(E) \rangle \simeq \left\langle X_p\left(\frac{E}{A}\right) \right\rangle$

and:

 $\langle X_p \rangle \simeq X_0 + D_p \log E$

Then:

$$\langle X_A \rangle \simeq \langle X_p \rangle - D_p \log A$$

 $\langle \log A \rangle$

$$\langle \ln A \rangle_E = \frac{\sum_A \phi_A(E) \ln A}{\sum_A \phi_A(E)}$$

Measurements of composition evolution.

Electromagnetic Showers

versus

Hadronic Showers

Electromagnetic Shower

$$\psi(u)$$
 Pair production
 $E_{e^+} = E_{\gamma} u$
 $\psi(u)$ Pair production
 $E_{\gamma} = E_e v$
 $\varphi(v)$ Bremsstrahlung
Vertices : theoretically understood
energy scaling.
 $\frac{dE}{dX}\Big|_{\text{ionization}} \simeq 2.2 \text{ g/cm}^2$

Radiation Length Pair production length Energy independent !

$$\frac{1}{dX}\Big|_{\text{ionization}} \simeq 2.2 \text{ g/cm}$$
$$\lambda_{\text{rad}} \simeq 37 \text{ g/cm}^2$$
$$\lambda(\gamma \to e^+ e^-) \simeq \frac{9}{7} \lambda_{\text{rad}}$$

Proton Shower

Vertices : theoretically not understood

(and energy dependent)

Elongation rate = $85 (g/cm^2)/decade$

Elongation Rate For protons

Different approaches to the [composition] vs [hadronic interaction modeling] problem.

Different approaches to the [composition] vs [hadronic interaction modeling] problem.

1. "Direct Route" :

- a. Obtain data at accelerators (LHC ! + others)
- b. Develop a sound theoretical framework to extrapolate to higher energy (beyond accelerators)
- c. Interpret the CR data

Different approaches to the [composition] vs [hadronic interaction modeling] problem.

1. "Direct Route" :

- a. Obtain data at accelerators (LHC ! + others)
- b. Develop a sound theoretical framework to extrapolate to higher energy (beyond accelerators)
- c. Interpret the CR data

2. "Astrophysics Route" :

Astrophysical composition measurements:

- * Magnetic deviations
- * Energy losses imprints on the energy spectrum
- * Acceleration Mechanism/Environment well understood [?!]

Use knowledge of composition to constrain hadronic interactions

Different approaches to the [composition] vs [hadronic interaction modeling] problem.

1. "Direct Route" :

- a. Obtain data at accelerators (LHC ! + others)
- b. Develop a sound theoretical framework to extrapolate to higher energy (beyond accelerators)
- c. Interpret the CR data

2. "Astrophysics Route" :

Astrophysical composition measurements:

- * Magnetic deviations
- * Energy losses imprints on the energy spectrum
- * Acceleration Mechanism/Environment well understood [?!]

Use knowledge of composition to constrain hadronic interactions

3. "Bootstrap Route" :

- * Self consistency
- * Different masses "quasi-resolved"

The "astrophysics route"

Proton interpretation for the UHECR ??

 $\langle \textit{X}_{max} \rangle$ and RMS

Compare DATA with predictions based on several assumptions for hadronic interactions....

$\langle X_{\rm max} \rangle$ and RMS

Compare DATA with predictions based on several assumptions for hadronic interactions....

AUGER result on Correlations with the VCV AGN catalogue November 2007. Update september 2010.

Significant dilution [but not disappearance] of the statistical significance

14 ev. 8 coincid. (2.9)
13 ev. 9 coincid. (2.7)
42 ev. 12 coincid. (8.8)

$$\delta\theta = (\delta\theta)_{\text{Milky Way}} + (\delta\theta)_{\text{Intergalactic}} + (\delta\theta)_{\text{Source Envelope}}$$
Deviation in GALACTIC Magnetic Field
$$\delta \simeq 2.7^{\circ} \frac{60 \text{ EeV}}{E/Z} \left| \int_{0}^{D} \left(\frac{\mathrm{dx}}{\mathrm{kpc}} \times \frac{\mathrm{B}}{3 \,\mu\mathrm{G}} \right) \right|$$

A deviation of few degrees for Particles with E ~ $6 * 10^{19} \text{ eV}$ implies a small charge Z < 2(3 ?)

Angular distance from Cen A (degrees)

PDG – Totem parametrizations + Glauber-Matthiae (1970) to estimate p-nucleus cross sections

$$E_{0} \simeq 10^{19.547} \text{ eV}$$

$$\sigma_{pp}^{\text{inel}} \simeq 124 \text{ mbarn}$$

$$\lambda_{p\text{Air}} \simeq 39.7 \text{ g cm}^{-2}$$

$$\sigma_{pp}^{\text{inel}} \simeq 225 \text{ mbarn}$$

$$\sigma_{pp}^{\text{inel}} \simeq 340 \text{ mbarn}$$

$$\lambda_{p\text{Air}} \simeq 30 \text{ g cm}^{-2}$$

$$\lambda_{p\text{Air}} \simeq 20 \text{ g cm}^{-2}$$

Xmax distributions !

 $E = 10^{18.25} \text{ eV}$

Logarithmic scale

 $E = 10^{18.25} \text{ eV}$

Logarithmic scale

 $E = 10^{18.25} \text{ eV}$

Total Proton-Proton Cross Section at $s^{1/2} = 30$ TeV

R. M. Baltrusaitis, G. L. Cassiday, J. W. Elbert, P. R Gerhardy, S. Ko, E. C. Loh, Y. Mizumoto, P. Sokolsky, and D. Steck University of Utah, Salt Lake City, Utah 84112 (Received 16 January 1984)

We have measured the proton-air inelastic cross section at $s^{1/2} = 30$ TeV by observing the distribution of extensive-air-shower maxima as a function of atmospheric depth. This distribution has an exponential tail whose slope is $\lambda = 72 \pm 9$ g cm⁻² which implies that $\sigma_{p-air}^{inel} = 530 \pm 66$ mb. Using Glauber theory and assuming that the elastic-scattering slope parameter b is proportional to σ_{pp}^{tot} , we infer a value of $\sigma_{pp}^{tot} = 120 \pm 15$ mb which lies between a logs and a log²s extrapolation of the total pp cross section as measured at lower energies.

FIG. 5. Distribution of depth of maxima X_{max} for data whose fitting errors are estimated to be $\delta x < 125 \text{ g cm}^{-2}$. The slope of the exponential tail is $\lambda = 73 \pm 9 \text{ g cm}^{-2}$.

Pioneering work of Fly's Eye

The (p-air) "Pierre" cross section

Measurement of the p-Air Interaction Length:

$$X_{\max} = X_0 + Y$$

Position 1st interaction Shower Development

$$F(X_{\text{max}}) \equiv \frac{dN_{\text{shower}}}{dX_{\text{max}}}$$
$$G(Y) \equiv \frac{dN_{\text{shower}}}{dY}$$

$$F(X_{\max}) = \int_0^\infty dY \int_0^\infty dX_0 \ G(Y) \ \frac{e^{-X_0/\lambda_p}}{\lambda_p} \ \delta[X_{\max} - (X_0 + Y)]$$
$$= \frac{e^{-X_{\max}/\lambda_p}}{\lambda_p} \left[\int_0^{X_{\max}} dY \ G(Y) \ e^{Y/\lambda_p} \right]$$

 $X_{\max} \to \infty$

Asymptotically: Exponential Distribution

Slope = Interaction Length

$$G(X) = F(X) + \lambda_p \ \frac{dF}{dX}$$

$$\Lambda(X) \equiv -\left[\frac{1}{F(X)} \frac{dF(X)}{dX}\right]^{-1} = \lambda_p \left(1 - \frac{G(X)}{F(X)}\right)^{-1}$$

"Local slope" (directly measurable)

Interaction Length

$$X_{\max} \to \infty$$

 $\Lambda(X_{\max}) \to \lambda_p$

 $G(X)/F(X) \to 0$

Montecarlo calculation Using Sibyll [+PDG cross sections + original Glauber]

Slow convergence of slope the interaction Length:

"Toy Models" (Analytic representation of particle spectra):

Model A : Hard spectra, more penetrating showers Model B : Soft spectra, less penetrating showers

 $z = E_{\pi}/E_0$

Xmax Distributions:

Compare with Auger data. Normalization: equal area.

Compare with Auger data. Normalization: equal area.

Normalization: same # of events for: $X_{\text{max}} \ge 800 \text{ g/cm}^2$

Normalization: same # of events for:

 $X_{\rm max} \ge 800 \ {\rm g/cm}^2$

Tentative conclusions:

- A very soft model Like "model B" is EXCLUDED by the data !
- A Model like "Sibyll" (moderate softening with increasing energy). allows/needs only a small addition of helium + (Z>2 nuclei)

 Harder spectra require larger additional component of heavier nuclei. Very attractive line of study: Extension of this type of analysis to lower and higher energies

PARTICLE PHYSICS

COSMIC RAYS ASTROPHYSICS

(more than) a dream : closing the circle!

PARTICLE PHYSICS

COSMIC RAYS ASTROPHYSICS

With UHECR one studies at the same time

"Gigantic Astrophysical Beasts" Millions of light years away 10^{+24} cm Length scale

Microscopic Partonic constituents of matter 10^{-15} cm Length scale

Exciting

ifficult