A Computer Cluster System for Pseudo-Parallel execution of Geant4 serial applications

Memmo Federici & Bruno Martino

Geant4

Applications

High energy and nuclear physics detectors

 ATLAS, CMS, HARP and LHCb at CERN and BaBar at SLAC

Accelerator and shielding

. Linacs for medical use

Medicine

- Radiotherapy
 - . photon, proton and light ion beams
 - . brachytherapy
 - . boron and gadolinium neutron capture therapy
- . Simulation of scanners
 - . PET & SPECT with GATE (Geant4 Application for Tomographic Emission)

Space

- Satellites
 - . effect of space environment on components (especially electronics)
 - . shielding of instruments
 - . charging effects
- . Space environment
 - . cosmic ray cut-offs
- Astronauts
 - . dose estimates

Simulation of s PET scanner using G (Courtesy o OpenGATE collabora

Scenario

Main aim:

 making the execution of Monte Carlo simulations within affordable times and costs

The approach:

- Minimizing the cost of the computer systems
- Achieving acceptable computation times
- Intensive reuse of serial simulation software

This work:

shows that it is possible to convert serial applications for Geant4 to be effectively executed in a "pseudo-parallel" mode with performances comparable to that achievable by the corresponding native parallel applications

Parallel applications

Advantages:

 parallel applications runs simultaneously on multiple processors, or cores inside the same processor, resulting in a significant increase in performance

Drawbacks:

- writing parallel applications generally implies a challenging design
- converting serial into parallel applications possibly requires a complete rewrite of the source code
- very expensive whenever excuted on high-end servers (machines with a large number of processor sockets, dozens, even hundreds, and a large amount of shared memory)

Computing environment

How to run simulations

At login time the user profile script:

- Sets the execution environment
- Makes it possible for the user to select the number of nodes devoted to the simulation

How to run simulations

At run time a script:

•Make it possible for the user to select the application to be run and generate the corresponding configuration files (one for each instance of the process)

Si ef

Bas

Actu

Prac

- m

A XMS to the ance of

ın)

by a

The model of the cryostat developed by Simone Lotti at IAPS

Simulation champaigns

Aim:

Practical advantages:

- makes the design of the detector more effective (the impact evaluation of design changes is easily evaluated)
- performances are increased by a factor of 60, costs by a factor of 7

Conclusions The cluster:

- has been optimized for GEANT4 use
- improves by a factor from 40 to 60 the speed for simulations that require large computational resources (compared with a single PC of the same category)
- drastically decreases the probability of failure thanks his great speed
- it's cheap: it currently consists of 8 commercial PC for a total of 64 cores
- it's modular: easily expandable without substantial changes
- can be easily reused on other projects!

Future developments:

- Porting of Monte Carlo code to NVIDIA GPU multicore architecture
- Use a distributed Parallel File Systems

