JEM EUSO Collaboration

Japan, USA, Korea, Mexico, Russia

Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland

13 Countries, 77 Institutions, more than 270 researchers

RIKEN: Leading institution

Extreme Universe Space Observatory

An Innovative Space Mission doing astronomy by looking downward from the Space Station at the Earth Atmosphere.

EUSO is devoted to the exploration from space of the highest energy processes present and accessible in the Universe. They are directly related to the extreme boundaries of the physical world.

DETECTION TECHNIQUE

Euso will observe the fluorescence signal looking to Nadir at the dark Earth atmosphere from its location on the ISS under a 60° full field of view. Fluorescence light will be imaged by a large Fresnel lens onto a finely segmented focal surface. A Cerenkov signal will be detected in a delayed coincidence with the fluorescence signal. The segmentation and the time resolution adopted will enable the reconstruction of the arrival direction and EAS energy, with an accuracy of order $\Delta E/E ~ 30\%$, and arrival direction ranging from a fraction of a degree to a few degrees depending on energy and zenith angle of the primary particle.

Science Instrument on HTV

JEM-EUSO Telescope will be deployed after it is attached at the ISS

HTV was successfully launched on September 2009

Outline of JEM Exposure Facility

A monocular compact instrument

Fresnel lens

System electronics

<u>Focal surface</u> support structure

Focal surface

The UV Telescope Parameters

Parameter	Value		
Field of View	±30 °		
Monitored Area	>1.3×10 ⁵ km ²		
Telescope aperture	≥2.5 m		
Operational wavelength	300-400 nm		
Resolution in angle	0.075°		
Focal Plane Area	4.5 m ²		
Pixel Size	<3 mm		
Number of Pixels	≈3×10⁵		
Pixel size on ground	≈560 m		
Time Resolution	2.5 µs		
Dead Time	<3%		
Detection Efficiency	≥20%		

Observation mode of JEM-EUSO

Vertical Mode

Tilted Mode

Larger exposure can be obtained

In a year of operation, EUSO will cover all sky directions

ISS Orbit → Full sky Coverage...

300nm

400nm

EUSO DETECTION TECHNIQUE

background measurement

sacco 27-Sep-2000 16:29

Science Objectives

• Fundamental Objective

Extreme energy astronomy by particle channel Determine their origin and the acceleration mechanism

Exploratory Objectives

- Detection of extreme energy gamma rays
- Detection of extreme energy neutrinos
- Study of the galactic magnetic field
- Verification of the relativity and the quantum gravity effect in extreme energy
- Global observations of nightglows, plasma discharges and lightning

EAS DETECTOR: EUSO APPROACH

To obtain a statistical significant sample of EECR events at $E > 10^{20} eV$, with flux value at the level of:

1 particle/year/100 km²

or with very low interaction cross section (neutrinos), a giant detector is required.

The Earth atmosphere, viewed from space with an acceptance area of the order of $5 \cdot 10^5 \text{ km}^2 \text{ sr}$, and a target mass of the order of $3 \cdot 10^{12} \text{ tons}$ constitutes an ideal target to UHE CR and cosmic neutrinos.

Comparison with current observatories

Experiment	Aperture km² sr	Status	Start	Lifetime (years)	Duty cycle (incl. clouds)	Exposure (km² sr y)	Relative to Auger
Auger	7,000	Operations	2006	4 (16)	1.0	27,370 (110,000)	1
TA	1,200	Operations	2008	2 (14)	1.0	2400 (16.000)	0.1
TUS	30,000	developed	2012	5	0.14	18,750	0.2
JEM-EUSO (E~100 EeV) Nadir-Mode	470,000 (10xAuger including DC)	proposed	2017	5	0.14	330000 (5 years Nadir)	3
JEM-EUSO (highest Energies) Tilted-Mode	1,300,000 (26xAuger including DC)	proposed	2017	5	0.14	910000 (5 years tilted)	8

Why JEM-EUSO? Large exposure + Full sky coverage

Atmospheric Luminous Phenomena

OH airlow from ground

Lightning picture observed from ISS

Leonid meteor swarm in 2001

Various airglows

TA-EUSO In September integration of the PDM then integration of the Digital Processor Unit, and delivery to Utah Operation: December 2012?

Test of the prototype at the Telescope Array (TA) site in Utah

JEM-EUSO Prototype Test by Balloon

The first integrated test using various elements developed for the JEM-EUSO UV telescope from a high altitude of ~40km.

~10-50 CR events/10hr $E \ge 10^{18} \text{ eV}$

Launch : ~ Jan. 2013

Launch base : Kiruna, Sweden

21

SUMMARY AND CONCLUSIONS

JEM EUSO is an <u>innovative Space</u> <u>Mission</u> doing astronomy by looking downward from the Space Station at the Earth Atmosphere

JEM EUSO will provide unique results in:

- 1 Astrophysics
- 2 Astroparticle Physics
- 3 Cosmology
- 4 Neutrino Astrophysics
- 5 Fundamental Physics
- 6 Atmospheric sounding