

Results from LHCf

Alessia Tricomi Univesity & INFN Catania

Vulcano Workshop 2012 Frontier Objects in Astrophysics and Particle Physics **Vulcano 28 May – 2 June 2012**

- Forward photon energy spectrum at $\sqrt{s} = 7$ TeV and 900 GeV p-p collisions
- \square $\pi^0 p_T$ spectra
- Prospects for new data taking
- Detector upgrade
- **Prospects for new analyses**

Physics Motivations Impact on HECR Physics

Vulcano 2012 May 28-June 2

2

Alessia Tricomi

Results from LHCf

+ HECR Open questions (E/X_{max})

+ HECR Open questions (E/X_{max}

LHCf @ LHC

The experimental set-up

Alessia Tricomi

Results from LHCf

+ LHCf: location and detector layout

+ How LHCf can contribute?

+ Brief LHCf photo-story

Detector removal

Inclusive photon spectrum analysis

"Measurement of zero degree single photon energy spectra for $\sqrt{s} = 7$ TeV proton-proton collisions at LHC" PLB 703 (2011) 128

Vulcano 2012 May 28-June 2

Data Set for inclusive photon spectrum analysis at 7 TeV

• Data

- Date: 15 May 2010 17:45-21:23 (Fill Number: 1104) except runs during the luminosity scan.
- Luminosity : $(6.5-6.3) \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$,
- DAQ Live Time : 85.7% for Arm1, 67.0% for Arm2
- Integrated Luminosity : 0.68 nb⁻¹ for Arm1, 0.53nb⁻¹ for Arm2
- Number of triggers : 2,916,496 events for Arm1
 3,072,691 events for Arm2
- Detectors in nominal positions and Normal Gain
- Monte Carlo
 - QGSJET II-03, DPMJET 3.04, SYBILL 2.1, EPOS 1.99 and PYTHIA8.145: about 10⁷ pp inelastic collisions each

+ Analysis WORKFLOW at 7 TeV

5. Systematic uncertainties

+ Comparison wrt MC Models at 7 TeV

File

Inclusive photon spectrum analysis at 900 GeV

"Measurement of zero degree single photon energy spectra for $\sqrt{s} = 900$ GeV proton-proton collisions at LHC" Submitted to PLB CERN-PH-EP-2012-048

Vulcano 2012 May 28-June 2

Data Set for inclusive photon spectrum analysis at 900 GeV

Data

- Date : 2,3 and 27 May 2010
 - Luminosity : $(3-12)x10^{28}$ cm⁻²s⁻¹,
 - DAQ Live Time : 99.2% for Arm1, 98.0% for Arm2
 - Integrated Luminosity : 0.30 nb⁻¹

Monte Carlo

 QGSJET II-03, DPMJET 3.04, SYBILL 2.1, EPOS 1.99 and PYTHIA 8.145: about ~3*10⁷ pp inelastic collisions each with default parameters

+ Analysis WORKFLOW @ 900 GeV 15 1. Energy Reconstruction Leakage-out Function 2. PID [ພ25 ພ] ≻ 0.1 20 20 3 Depth[R.L.] 10 30 40 15 15 20 25 30 X [mm] 10 ١<u>ڳ</u> 20 3 Depth[R.L.] 30 10 40 0 5 10 15 20 25 X [mm] 4. Acceptance cut 3. Multi-Hit rejection Cross section of LHCf detectors Layer:0 Y ADC Counts Beam pipe shadow Beam pipe shadow 1000 44mm.n=8.77 Small Tower

Arm

Holizontal(mm)

10 20 30

-40 -30 -20 -10 0

Few multi-particle events are expected 5. Systematic uncertainties

Alessia Tricomi

500

Results from LHCf

η> 10.15

Large Tower

8.77**ੱ**<η< 9.46

22mm,q=9.46

0

-40 -30 -20 -10

11mm,ŋ=10.15

Arm2

Holizontal(mm)

+ Comparison wrt MC Models at 900 GeV

16

Results from LHCf

+ DATA-MC : comp. 900GeV/7TeV

900GeV

+ DATA : Comp. 900GeV/7TeV

- ✓ Normalized by the number of entries in $X_F > 0.1$
- ✓ No systematic error is considered in both collision energies.

Good agreement of X_F spectrum shape between 900 GeV and 7 TeV. → Checking more for the Feynman scaling now.

Forward π^0 spectra at 7 TeV

"Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s} =$ 7TeV proton-proton collisions at LHC"

Submitted to PRD

CERN-PH-EP-2012-145

LUC GE-TWA BLOCK SET AND DEC GE-TWA DEC

Vulcano 2012 May 28-June 2

Alessia Tricomi

+ 7 TeV π^0 analysis

Mass, energy and transverse momentum are reconstructed from the energies and impact positions of photon pairs measured by each calorimeter

$$M_{\pi^0} = \sqrt{E_{\gamma 1} E_{\gamma 2} \theta^2},$$

$$E_{\pi^0} = E_{\gamma 1} + E_{\gamma 2},$$

$$P_{T\pi^0} = P_{T\gamma1} + P_{T\gamma2}$$

<u>Analysis Procedure</u>

- Standard photon reconstruction
 - **Event selection**
 - one photon in each calorimeter
 - reconstructed invariant mass
- Background subtraction by using outer region of mass peak
- Unfolding for detector response.
- Acceptance correction.

Dedicated part for π^0 analysis

+ π^0 Data vs MC

- dpmjet 3.04 & pythia 8.145 show overall agreement with LHCf data for 9.2<y<9.6 and p_T <0.25 GeV/c, while the expected π⁰ production rates by both models exceed the LHCf data as p_T becomes large
- sibyll 2.1 predicts harder pion spectra than data, but the expected π⁰ yield is generally small
- qgsjet II-03 predicts π⁰ spectra softer than LHCf data
- epos 1.99 shows the best overall agreement with the LHCf data.
 - □ behaves softer in the low p_T region, $p_T < 0.4 GeV/c$ in 9.0 < y < 9.4 and $p_T < 0.3 GeV/c$ in 9.4 < y < 9.6
 - behaves harder in the large p_T region. Alessia Tricomi

Impact on HECR Physics Understanding the impact of our measurements

Vulcano 2012 May 28-June 2

Alessia Tricomi

Results from LHCf

+ π^0 spectrum and air shower

Alessia Tricomi Results from LHCf

+ LHCf <p_T> distribution

What's next

Detector upgrade, ion runs, future analyses

Vulcano 2012 May 28-June 2

Alessia Tricomi

Results from LHCf

Vulcano 2012 May 28-June 2

+ LHCf Future PLANS (II): p-Pb run

Photon spectra Small tower

Big tower

Vulcano 2012 May 28-June 2

+ LHCf Future PLANS (II): p-Pb run Neutron spectra Small tower Big tower

+LHCf on going activities: new analyses

2012-2013: New analyses

- Hadron spectra
- π^0 type \mathbb{R} measurement
- η, K⁰, Λ ?

Conclusions

- LHCf analysis activity is progressing well
 - 7 TeV Inclusive photon analysis published
 - First comparison of various hadronic interaction models with experimental data in the most challenging phase space region (8.81 < η < 8.99, η > 10.94)
 - Large discrepancy especially in the high energy region with all models
 - 900 GeV spectra submutted
 - Comparison with 7 TeV in agreement
 - $\pi^0 p_T$ spectra just released
 - Comparisons with models gives important hints for HECR and soft QCD Physics
 - Implications on UHECR Physics under study in strict connection with relevant theoreticians and model developer
 - Stay tuned for new results
- We are upgrading the detectors to improve their radiation hardness (GSO scintillators and rearrange silicon layers) for 14 TeV run
- We will reinstall ARM2 detector for the p-Pb run at the and of 2012
 - Physics case well motivated
- We are also thinking about a possible run at RHIC with lighter ions
- Last but not least...We are also working for the 14 TeV run with upgraded detector!!!

Alessia Tricomi Resu

Backup slides

Some additional material

+ LHCf operations @900 GeV & 7 TeV

With Stable Beam at 900 GeV Dec 6th – Dec 15th 2009 With Stable Beam at 900 GeV May 2nd – May 27th 2010

	Shower	Gamma	Hadron
Arm1	46,800	4,100	11,527
Arm2	66,700	6,158	26,094

With Stable Beam at 7 TeV March 30th - July 19th 2010

We took data with and without 100 μrad crossing angle for different vertical detector positions

	Shower	Gamma	Hadron	п ⁰
Arm1	172,263,255	56,846,874	111,971,115	344,526
Arm2	160,587,306	52,993,810	104,381,748	676,157

+ Systematic Uncertainties

Main systematic uncertainty due to energy scale

- Energy scale can be checked by π⁰ identification from two tower events.
- Mass shift observed both in Arm1 (+7.8%) and Arm2 (+3.7%)
- No energy scaling applied, but shifts assigned in the systematic error in energy
- Uncorrelated uncertainties between ARM1 and ARM2
 - Energy scale (except π^0 error)
 - Beam center position
 - PID
 - Multi-hit selection
- Correlated uncertainty
 - Energy scale (π^0 error)
 - Luminosity error

36

 $\mathbf{M} = \theta \sqrt{(\mathbf{E}_1 \mathbf{x} \mathbf{E}_2)}$

+ π^0 reconstruction

Mass [MeV]

Analysis 3. -Multi-hit identification

- Reject events with multi-peaks
 - Identify multi-peaks in one tower by position sensitive layers.
 - Select only the single peak events for spectra.

Calorimeters viewed from IP

- Geometrical acceptance of Arm1 and Arm2
- Crossing angle operation enhances the acceptance

+

+ Luminosity Estimation

• Luminosity for the analysis is calculated from Front Counter rates: $L = CF \times R_{FC}$

+ Estimation of Pile up

When the circulated bunch is 1x1, the probability of N collisions per Xing is $P(N) = \frac{\lambda^{N} \exp[-\lambda]}{N!} \qquad \lambda = \frac{L \cdot \sigma}{f}$

The ratio of the pile up event is

$$R_{\text{pileup}} = \frac{P(N \ge 2)}{P(N \ge 1)} = \frac{1 - (1 + \lambda)e^{-\lambda}}{1 - e^{-\lambda}}$$

The maximum luminosity per bunch during runs used for the analysis is 2.3×10^{28} cm⁻²s⁻¹

So the probability of pile up is estimated to be 7.2% with σ of 71.5mb

Taking into account the calorimeter acceptance (~0.03) only 0.2% of events have multi-hit due to pile-up. It does not affect our results

Alessia Tricomi

+Backgrounds

- 1. Pileup of collisions in one beam crossing
 - Low Luminosity fill, L=6x10²⁸cm⁻²s⁻¹
 - \rightarrow 7% pileup at collisions, 0.2% at the detectors.
- 2. Collisions between secondary's and beam pipes
 - Very low energy particles reach the detector (few % at 100GeV)
- 3. Collisions between beams and residual gas
 - Estimated from data with non-crossing bunches.
 - → <0.1%

Beam-Gas backgrounds

Secondary-beam pipe backgrounds

Systematic error from Energy scale

- Two components:
 - Relatively well known: Detector response, SPS => 3.5%
 - Unknown: π^0 mass => 7.8%, 3.8% for Arm1 and Arm2.
- Please note:
 - 3.5% is symmetric around measured energy
- - 7.8% (3.8%) are asymmetric, because of the π^0 mass shift
- No 'hand made' correction is applied up to now for safety
- Total uncertainty is -9.8% / +1.8% for Arml -6.6% / +2.2% for Arm2

Systematic Uncertainty on Spectra is estimated from difference between normal spectra and energy shifted spectra.

180

Mass [MeV]

200

π^0 mass vs π^0 energy

+ 7 TeV π^0 analysis

Remaining background spectrum is estimated using the sideband information, then the BG spectrum is subtracted from the spectrum made in the signal window.

$$Signal = f(E, P_T)^{signal} - \int_{\hat{M}-3\sigma_l}^{\hat{M}+3\sigma_u} \mathcal{L}_{BG} dM \ f(E, P_T)^{BG} rac{\int_{\hat{M}-6\sigma_l}^{\hat{M}-3\sigma_l} \mathcal{L}_{BG} dM + \int_{\hat{M}+3\sigma_u}^{\hat{M}+6\sigma_u} \mathcal{L}_{BG} dM}{\int_{\hat{M}-6\sigma_l}^{\hat{M}-3\sigma_l} \mathcal{L}_{BG} dM + \int_{\hat{M}+3\sigma_u}^{\hat{M}+6\sigma_u} \mathcal{L}_{BG} dM}$$

10⁻²

10⁻³

10-4

3500

Detector responses are corrected by an unfolding process that is based on the iterative Bayesian method.

(G. D' Agostini NIM A 362 (1995) 487)

Detector response corrected spectrum is proceeded to the acceptance correction.

comparison of arm1 and arm2 spectra_l

- Multi-hit rejection and PID correction applied
- Energy scale systematic not considered due to strong correlation between Arm1 and Arm2

Deviation in small tower: still unclear, but within systematic errors

Alessia Tricomi

+η Mass

Arm2 detector, all runs with zero crossing angleTrue η Mass:547.9 MeVMC Reconstructed η Mass peak:548.5 ± 1.0 MeVData Reconstructed η Mass peak:562.2 ± 1.8 MeV (2.6%)

700

650

10¹⁸

10¹⁹

E [eV]

SIBYLL predicts perfect scaling while QGSJET2 predicts softening at higher energy

Qualitatively consistent with Xmax prediction Vulcano 2012 May 28-June 2

+ Requirements and conclusions...

- We require to run with **only one detector**
 - <u>Arm2</u> (W/scint. e.m. calorimeter + μ-strip silicon)
 - Only on one side of IP1 (on P2 side, compatible with the preferred machine setup: Beam1=p, Beam2=Pb)
- Considering machine/physics params:
 - Number of bunches, n = 540 (100 ns spacing)
 - Luminosity up to <u>10²⁸ cm⁻²s⁻¹</u>
 - Interaction cross section 2.15 b

PILE-UP effect

- Around 3.6 ×10⁻³ interactions per bunch crossing Arm2 IP1
- 2% probability for one interaction in five successive beam crossing (typical time for the development of signals from LHCf scintillators ~500 ns) → NOT AN ISSUE
- Some not interacting bunches required for beam-gas subtraction

Comparison of EJ260 and GSO -Radiation Hardness-

- EJ260 (HIMAC* Carbon beam) 10% decrease of light yield after exposure of 100Gy
- GSO (HIMAC Carbon beam) No decrease of light yield even after 7*10^5Gy exposure, BUT increase of light yield is confirmed
- The increase depend on irradiation rate (~2.5%/[100Gy/hour])

*HIMAC : Heavy Ion Medical Accelerator in Chiba

Alessia Tricomi

Results from LHCf

10⁶ Dose[Gy]

10⁵

PMT-L

PMT-R

0.4 0.2

10³

10⁴

