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The plan of this talk:
Overcoming the Coulomb barrier at high Z elements
The attractiveness of neutron absorption reactions

Where do you get neutrons from?
How it is supposed to work

Problems: does it work!?
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Neutron capture processes

Two limits:
Slow neutron capture: 10° or more years
Rapid capture:<1 second

There 1s no (1n theory?)‘1n between’ process

Thursday, May 31, 12



How much there 1s to synthesize?

There are 170 nuclei with Z>30 per 2.8x10!Y protons

Fe =9.0x105, Co =2.3x103, Ni =5.0x104, Cu =4.5x102, and
7/n=1.1x103
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How much there is to synthesize?

There are 170 nuclei with Z>30 per 2.8x10!Y protons

Fe =9.0x105, Co =2.3x103,Ni=5.0x104, Cu =4.5x102, and
7/n=1.1x103

So we have to convert 1.8x10- of the Fe group into
HTTI nuclei

It these nucle1 are formed by means of neutron capture, we

need at least 1.5 x 104 neutrons, which is almost one
neutron per 1iron nucleus.
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The calculation is 170 x (240 — 56)/2 = 1.5 x 104 where
(240 — 56)/2 1s the mean number of neutrons needed to
synthesize the elements between A = 56 and A = 240, and
170 1s the total number of nuclei.

100% efficiency 1s assumed.
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The calculation is 170 x (240 — 56)/2 = 1.5 x 104 where
(240 — 56)/2 1s the mean number of neutrons needed to
synthesize the elements between A = 56 and A = 240, and
170 1s the total number of nuclei.

100% efficiency 1s assumed.

So, while the energetic demands are negligible,
the source of neutron 1s a crucial problem
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The synthesis of the HTT nuclei 1s therefore a side effect which
synthesizes trace elements. It has no effect on the evolution of the
star.
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The synthesis of the HTT nuclei 1s therefore a side effect which
synthesizes trace elements. It has no effect on the evolution of the
star.

The synthesis cannot take place at temperatures higher than
5x1019K because at higher T, the photons
disintegrate the nucle1 and no HTI comes out

Mayer & Teller 1dea of fission of a super heavy
nucleus only shifts the problem.

The a [5 v is quite successful for A>100.
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1956 Suess & Urey: no single theory can
explain all the abundances of the nuclei and
Isotopes.
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So B2FH invented the s-process and for the
fast process “invented” the fast rate




Present day conventional view of synthesis process
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Cross Section For Neutron Absorption (mb)
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The effect of magic number on
neutron absorption
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Binding Energy Neutron drip line
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The neutron capture continues until nuclei become

unstable against X decay, hence the process cannot
synthesize elements heavier than Lead

The last reaction is:

Bi?"® 4+ n — 20pp 4 .
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Assuming steady state and not time dependent irradiation
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Progress made in over 30 years

KAPPELER ET AL.
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The idea of time dependent irradiation

SOLAR - SYSTEM oWN; CURVE

Time dependent
exponential irradiation

Pb
K L 1 B I TN N T AN WS N S B 1 11
60 70 80 90 100 110 120 130 ; 140 150 iTo 180 190 200 20

Figure 12.15: The solid line is a calculated curve
corresponding to an exponential distribution of in-
tegrated neutron flux. After Seeger et al 1965.

Thursday, May 31, 12



The idea of time dependent irradiation

SOLAR - SYSTEM oWN; CURVE
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Time dependent
exponential irradiation
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Figure 12.15: The solid line is a calculated curve

aSSUMm ed corresponding to an exponential distribution of in-
tegrated neutron flux. After Seeger et al 1965.
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Solar system elements classification
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The fundamental problems in the s-process:

find a stellar site, with seed nuclei,
good neutron sources,
that eventually is ejected to space
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Neutron sources

Greenstein, who was an astronomer and not a nuclear physicists, and
independently by Cameron, realized that the exothermic reaction

13C +a — 160 + n + 2.2MeV

IS good stellar neutron source. Indeed, this reaction is the most important
and famous neutron source for synthesizing the nuclei in the s-process.

B2FH added the following exothermic reactions:

7O+ > 2ONe+n+0.60MeV
2INe+ > 24Mg+n+2.58MeV
Mg+ > 28Si+n+2.67MeV

26Mg+x > 29Si+n+0.04MeV
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The next reactions in this series are endothermic, namely, the
reactions need energy to proceed,

29Si+ o+ 1.53MeV >  32G+n

33§+ x+2.0MeV > 36A+n
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Most of the seed nuclei are rare (large changes in abundances are
expected)

X particles should be around (if it is during He burning, there will be
plenty, else you call for photoionization of & nuclei)

The targets of the a particles in the generation of the neutrons are outside the
main stream of synthesized nuclei.

This fact is of fundamental importance because it allowed to model the s-process
without attaching it to a specific stellar model. The stellar model does affect the
s-process, but the s-process has no effect on the structure or evolution of the star.

But it deals with trace elements and minute energy consumption. The targets are
rather rare species and hence, can provide only limited amounts of neutrons.

f the scarcity of neutrons is not sufficient to worry the theoreticians, another

oroblem is the existence of large amounts of *N which are for our purposes here a
noison for neutrons via the reaction

|4N.|.n > |4C+P > |4N+B-
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How to square the circle!?

FB2 (already in 1955) and later B2FH (in 1957) reiterated the
supposition, hypothesized ingeniously that:

During the critical phase in which neutrons are
released, the product of the 3a reaction, 12C, which
should be abundant, mixes with the envelope and the
mixing brings fresh hydrogen-rich material into the
burning zone. Consequently, the hydrogen interacts
with the 12C and converts it to 13N that decays into
13C, which is then available for an additional absorptio
of an a and the release of neutrons.
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EURECA
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B2FH hypothesized therefore, that sporadic mixing between the
burning zone and the unburnt envelope leads to a continuous
supply, not too much but just in measure, of raw materials
needed for the production of neutrons.
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Moreover, at the same time, 12C is dredged-up by the same hypothesized
mixing from the burning zone into the envelope and creates a star with a

surface rich in carbon.

Thus, the known ’carbon stars’ should be, a la B2FH, the location where
neutrons are released and build the HTI nuclei.

B2FH did not calculate a stellar model in which the mixing mechanism
operates nor did they propose any specific sporadic mixing mechanism. It
was just a scenario.
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It should be noted that already Cameron in 1954, while suggesting
the 13C reaction, realized the problem with the supply of neutrons.

Cameron stated therefore,
that the '3C reaction is particularly important in those stars with

appreciable internal circulation.

What circulation, timescales, mechanism etc were however, not
specified.
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In 1952 Merrill discovered technetium (98Tc) in S type stars
namely, a late-type giant star whose spectrum displays the
existence of s-process elements in the star, like zirconium

and yttrium.

Technetium is radioactive with half lifetime of 4.2 x 106yrs,
which is much shorter than the lifetime of the star and
hence, must have been produced recently inside the star
and brought up to the surface.

Thus, evidenc
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Technetium was discovered in Palermo (Segre)-
use in medicine ’Tc
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The title of Merrill’s paper was:
Spectroscopic Observations of Stars of Class S, (Apd, 116, 21, 1952).

The boring title Merrill chose for his paper hides the great discovery.
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The title of Merrill’s paper was:
Spectroscopic Observations of Stars of Class S, (Apd, 116, 21, 1952).

The boring title Merrill chose for his paper hides the great discovery.

In these days practice the title would have been

At long last: The first ever discovery and
proof on nuclear reactions in stars.




The neutron source problem




Insufficient nuclear data problem
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The S factor for the 13C+ot —= 1%O+n

The stellar energy range
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The S factor for the 13C+ot —= 1%O+n

The stellar energy range 1
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Relative yield
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The Rosetta Stone: FG Sagittae

In 1960 Richter FG Sagittae changed its luminosity by a factor of
about 50 since the beginning of the twentieth century, on top of
which smaller luminosity variations were observed. Richter gave
no information about something unusual with respect to s-process
elements.

During the years 1960-1967 the spectra of the star was investigated

by Herbig and Boyarchuck who found that the spectra changed
during the 7 years of observations from a B8 Ia to A5 Ia, which
means cooling.
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The dramatic change took place when Langer et al
discovered that the spectral lines of several s-
process elements began to appear 1n the spectra of
FG Sagittae sometimes 1n 1967 and since then they
increased their strength with time to the point that
present day values are about 25 times the solar
value.




Kraft, taken aback by the phenomenon, named the star
as the "’Rosetta stone of nucleosynthesis’.

Further observations revealed that FG Sagittae ejected a
planetary nebula some 6000 years ago.
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In 1977 Kipper and Kipper found that while the abundances of the s-
process elements changed, those of the iron peak elements remained

unchanged.

In the past 100 years it brightened by about a factor of more than
70 then cooled off at a rate of 340K/year between 1955 and 1965 and

at a rate of 250K/year between 1969 and 1974.
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The full story of FG Sagittae has not yet been told, but
present accepted view 1s that FG Sagittae experienced the last
episode of s-process elements formation during the ’last
thermal pulse’ and ejected the rest of the envelope as a
planetary nebula.
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Where does it take place
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Red Giant Branch
A R

Luminosity

Surface Temperature
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The He Red Giant Branch
flash

Luminosity

Surface Temperature
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Many years of attempts to discover whether the
helium flash causes mixing.
So tar the most recent calculations indicate
Nno Mixing
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22Ne Primordial A>10 species Convection

Stellar wind

Relative composition
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The structure of the star at the beginning of
the AGB phase
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Mixing yes or no?
The observational results and their interpretations are still not clear.

For example, Charbonnel and do Nascimento : 96% of evolved stars

show a 12C/13C ratio in disagreement with the standard predictions,
and conclude that 96% of low-mass stars do experience an extra-
mixing process on the RGB.

Palla et al. examined the planetary nebula NGC 3242 and concluded
that the spectrum indicates that the progenitor star did not undergo a
phase of deep mixing during the last stages of its evolution, leaving
the 1ssue still unsolved.

Thursday, May 31, 12



Pavlenko et al examined the 12C/13C ratio in
giant stars 1in globular clusters,conclude that it
suggests complete mixing

on the ascent of the red giant branch,

in contrast to current models




So what happens?

Did we discover the B2FH partial mixing idea?

Not yet for sure




The unsolved problem of mass loss

When no theory 1s available:

G

rate of mass loss = m = = = =

RL

R, L,

o~ gz~ (@) o1

TKHR

N is our fudge factor

P

How reliable are the numbers?
Truth or ’

Consequences
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There 1s one measurements of 1 tor Popll stars
(S stars are Pop 1l stars)

There are measurements for Pop I

But: the rates appear to be time dependent and
vary by a large factor (




In the theory:
each computer code gives another mixing history.

Unsolved problems:
semi-convection
Mixing by convection, undershooting and overshooting
Mixing by gravity waves
Rotation and mixing by rotation

Mass loss: observation and theory
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How come the universal r and the s process have
practically the same yield?

© Original Artist
COMPLAINTS Reproduction rights obtainable from

wwwy. CartoonStock.com

R fog

"Your job will be to stand in
there and say 'So what?"'"
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