CLONES: Digital Twins of the local Universe for bias-free inference

Jenny Sorce and collaborators

Researcher at CRIStAL, Lille & Associate Researcher at IAS, Orsay

CosmoVerse Workshop, Napoli - May 21st, 2025

"This identical twin of yours... Can you describe him?"

Cosmology: ACDM?

Cosmology: ACDM?

Example of S8 (σ_{8} , Ω_{m})

Galaxy cluster mass function

Planck Collaboration, Pratt+2018

Jenny Sorce (CRIStAL/IAS)

Example of S8 ($\sigma_{8, \Omega_{m}}$)

Changing mass calibration

Planck Collaboration, Pratt+2018

What and Why?

Hydrostatic equilibrium : intracluster medium

$$\frac{dP}{dr} = -\frac{G\rho M_{HE}}{r^2}$$

Spherical symmetry + no turbulent/magnetic pressure :

$$\Rightarrow M_{HE}(r) = -\frac{rP_{th}(r)}{G\mu m_p n_e(r)} \frac{d\ln P_{th}(r)}{d\ln r}$$

Gravitational potential well : DM + Baryons

$$M_{tot} = M_{DM} + M_{gas} + M_{stars}$$

Hydrostatic mass bias

$$\rightarrow M_{HE} = (1-b)M_{tot}$$

What and Why?

Hydrostatic equilibrium : intracluster medium

$$\frac{dP}{dr} = -\frac{G\rho M_{HE}}{r^2}$$

Spherical symmetry + no turbulent/magnetic pressure :

$$\Rightarrow M_{HE}(r) = -\frac{rP_{th}(r)}{G\mu m_p n_e(r)} \frac{d\ln P_{th}(r)}{d\ln r}$$

Gravitational potential well : DM + Baryons

$$M_{tot} = M_{DM} + M_{gas} + M_{stars}$$

Hydrostatic mass bias

$$\rightarrow M_{HE} = (1 - b)M_{tot}$$

From cosmological simulations

Example of S8 (σ_{8} , Ω_{m}) Huge disparity

Simulations & systematics

Cosmo Param (H₀, S₈) = X +/- $\sigma_{measure}$ +/- $\sigma_{systematics}$

- nb measurements/obs.
- instruments/tools sensitivity
 - = precision

Planck Collaboration, Pratt+2018

Simulations & systematics

Cosmo Param (H₀, S₈) = X +/- $\sigma_{measure}$ +/- $\sigma_{systematics}$

- nb measurements/obs.
- instruments/tools sensitivity

= precision

Standard cosmological simulations can give the total uncertainty but cannot reduce the systematics

Simulations & systematics

Cosmo Param (H₀, S₈) = X +/- $\sigma_{measure}$ +/- $\sigma_{systematics}$

- nb measurements/obs.
- instruments/tools sensitivity

= precision

Standard cosmological simulations can give the total uncertainty but cannot reduce the systematics

Standard cosmological simulations

e.g. CLONES = Constrained LOcal & Nesting Environment Simulations

I could live with myself."

Sorce+2016, Sorce2018

Jenny Sorce (CRIStAL/IAS)

e.g. CLONES = Constrained LOcal & Nesting **Environment Simulations**

2025

e.g. CLONES = Constrained LOcal & Nesting **Environment Simulations**

17

e.g. CLONES = **Constrained LOcal & Nesting Environment Simulations**

CLONES and the local LSS

500 Mpc/h, 1024^3 particles, DM only, Planck cosmology

CLONES and the local LSS

500 Mpc/h, 1024^3 particles, DM only, Planck cosmology

CLONES and the local LSS

500 Mpc/h, 1024^3 particles, DM only, Planck cosmology

CLONES: hydrostatic mass bias & projection effects

Jenny Sorce (CRIStAL/IAS)

CLONES: hydrostatic mass bias & projection effects

Théo Lebeau

CLONES: hydrostatic mass bias & projection effects

Varies with R and projection !

Jenny Sorce (CRIStAL/IAS)

Lebeau, Sorce+2023

Jenny Sorce (CRIStAL/IAS)

Kay (2012)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

_

3D

Cen

Fil

Filx

Fily

Lebeau, Sorce+2023

Battaglia (2013)

McCarthy (2016)

Biffi (2016)

Martizzi (2016)

Le Brun (2017)

CLONES: hydrostatic mass bias & projection effects

Projection effects on the hydrostatic mass bias = potential S8 problem !

Ansarifard (2020)

Barnes (2020)

Henson (2017)

Gupta (2017)

Pearce (2020)

Lebeau (2023), no fit

Gianfagna (2021)

2025

Hydrostatic equilibrium : intracluster medium

$$\frac{dP}{dr} = -\frac{G\rho M_{HE}}{r^2}$$

Spherical symmetry + no turbulent/magnetic pressure :

$$\Rightarrow M_{HE}(r) = -\frac{rP_{th}(r)}{G\mu m_p n_e(r)} \frac{d\ln P_{th}(r)}{d\ln r}$$

Gravitational potential well : DM + Baryons

$$M_{tot} = M_{DM} + M_{gas} + M_{stars}$$

Hydrostatic mass bias

$$\rightarrow M_{HE} = (1-b)M_{tot}$$

Hydrostatic equilibrium : intracluster medium

$$\frac{dP}{dr} = -\frac{G\rho M_{HE}}{r^2}$$

Gravitational potential well : DM + Baryons

No other sources of pressure (other than thermal)?

urbuler

CLONES: On

CLONES: On

Multiple learnings from CLONES

and

Multiple learnings from CLONES

and more...

Virgo Cluster Sorce+2016, 2019, 2021, in prep., Olchanski & Sorce 2018, Lebeau+2024a,b, submitted

Cosmic Rays in the local Universe Hackstein+2018, Boess+ 2024

Coma connectivity &

Distorsion in Hubble

diagram

Malavasi, Sorce+ 2023

Sorce+2024

SLOW: local web

Dolag, Sorce+2023, Hernandez+2024, Seidel+submitted, Jung+2024, Sommer+2024

Zone of Avoidance Sorce+2017

HESTIA: Local Group

Carlesi,Sorce+2016,Carlesi+2016, 2017, Libeskind+2020, Damle+2022,

Newton+2023, Luis+2022,

Dupuy+2022, Arora+2022, Khoperskov+2022a,b,c, Osipova+2023

Conclusion

• **Standard** cosmological simulations give only the full uncertainty

• **Constrained** cosmological simulations permit **bias-free inference**

CLONES are constrained

cosmological simulations valid down to the cluster scales with induced smaller scales

Galaxy

30Mcpu.h 100 Mpc/h, 4096³ particles effective (5 Mpc/h zoom), 340 pc

Cluster

6 Mcpu.h 500 Mpc/h, 8192³ particles effective (30 Mpc/h zoom), 300 pc

LSS

50 Mcpu.h 500 Mpc/h, 2048³ particles, 1.9 kpc/h

Shapley Virgo PP

Perspectives

Thank you, Merci, Grazie, Gracias, Danke, ευχαριστώ Mahalo, 谢谢, ありがとう, Дякую, птп, спаси́бо, Obrigada, Dank u, Tak, Cảm ơn, Dziękuję, 감사합니다 Kiitos, Aitäh, diolch, dankewol, ಧನ್ಯವಾದಗಳು, شكر), ...*

* Missing your 'thanks' spelling? It means I did not get the chance to learn how to say it so far

Jenny Sorce (CRIStAL/IAS)