Observations of Electron Cloud Phenomena at PETRA III

Presentation at the ECLOUD 2012 workshop

Rainer Wanzenberg

ECLOUD 2012 June 5-8, 2012

Hotel Hermitage La Biodola, Isola d'Elba, Italy

PETRA III - Overview

S

PETRA III - Parameters

Design Parameter	PETRA III	
Energy / GeV	6	
Circumference /m	230)4
RF Frequency / MHz	50	0
RF harmonic number	384	10
RF Voltage / MV	20)
Momentum compaction	1.22	10 ⁻³
Synchrotron tune	0.049	
Total current / mA	100	
Number of bunches	960	40
Bunch population / 10 ¹⁰	0.5	12
Bunch separation / ns	8	192
Emittance (horz. / vert.) /nm	1 / 0.01	
Bunch length / mm	12	
Damping time H/V/L / ms	16 / 16 / 8	

PETRA III is running with positrons !

User runs in 2011 and 2012

100	100	80
240	60	40
2.0	8.9	9.6
32	128	192

Instability threshold – coasting beam model

Broad band resonator model + coasting beam model *)

$$Z(\omega) = \frac{cR_S}{\omega} \frac{1}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)}$$
(10)
$$= K \frac{\lambda_e}{\lambda_+} \frac{L}{\sigma_y(\sigma_x + \sigma_y)} \frac{\omega_e}{\omega} \frac{Z_0}{4\pi} \frac{Q}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)},$$

where K is an enhancement factor due to cloud size, pinching etc. [11], and Z_0 is the impedance of vacuum (377 Ω). The figure 4 shows K = 1.5. In the case of KEKB, the enhancement factor was $K = 2 \sim 4$ for the vertical wake field.

$$U \equiv \frac{\sqrt{3}\lambda_{+}r_{e}\beta\omega_{0}}{\gamma\omega_{e}\eta\sigma_{\delta}}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} = \frac{\sqrt{3}\lambda_{+}r_{e}\beta}{\gamma\nu_{s}\omega_{e}\sigma_{z}/c}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} \quad < \mathbf{1}$$

threshold density:

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{KQ\sqrt{3}r_e\beta L} \qquad \qquad K \sim \omega_e\sigma_z/c.$$

(L = circumference of the ring)

Q~5<K

$\omega_{e,y} = \sqrt{\frac{\lambda_+ r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$		$K\sim\omega_e\sigma_z/c$
	PETRA III:	~ 1.4 x 10 ¹² m ⁻³

 λ_+ = beam line density in the e+ bunch

(PETRA III, 960 bunches, 100 mA)

*) K. Ohmi: Electron Cloud Effect in Damping Rings of Linear Colliders 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects "ECLOUD'04"

PETRA III Vacuum chamber

IPAC 2011 Secondary Electron Yield of Al Samples from the Dipole chamber of PETRA III

D.R. Grosso, M. Commisso, and R. Cimino, LNF-INFN, Frascati Italy R. Flammini, CNR-IMIP, Monterotondo, Italy R. Larciprete, CNR-ISC, Rome, Italy R. W., DESY, Hamburg, Germany

Arc: AI, 80 mm x 40 mm

Wiggler: AI, 96 mm x 17.9 mm NEG coated

Undulator: AI, 57 mm x 7 mm

PETRA III – Commissioning and User Runs

2009

Commissioning:

- First stored beam (April 13)
- Operation with <u>all</u> (2 x 10) wigglers from Aug 12, 2009

2010

- First user runs (friendly user) (Feb, 2010)
- Ecloud studies May/June 2010
- Aug 2 Aug 7, 2010
 - Machine studies <u>without</u> wigglers
- > User runs (Aug 2010)

2011

- > About 9 month of user runs
 - 3 bunch patterns

Ecloud Studies Oct, Nov.

2012

Scrubbing Run (March)

Filling scheme	Bunch positions (8 ns spacing) 1 3 5 7 25 27 29 31 960 16 ns
480 x 1	↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
> Us 20 ²	er runs, bunch pattern as 11 + recently 320 bunches

PETRA III Emittance Diagnostics

Diagnostic Beam Line (Exp. Hall)

Interferometric beam size measurements (North)

Reference: PETRA III G. Kube, DIPAC'07, EPAC'08 ATF - KEK H.Hanyo et al., Proc. of PAC99 (1999), 2143 T. Naito and T. Mitsuhashi, Phys. Rev. ST Accel. Beams 9 (2006) 122802

60 x 4 bunches, 100 mA Vert. Emittance

~ 5 pm rad

(March 8, 2012)

Page 7

Conditioning

Integrated beam current

May 2009

Jan 2012

Photons per length and bunch population

$$\frac{dN_{\gamma}}{ds} = \frac{5}{2\sqrt{3}} \frac{1}{137} \frac{E}{m_0 c^2} \frac{1}{\rho} = 0.0645 \frac{1}{m}$$
100 mA beam current
Total beam population

4.8 x 10¹² positrons

Now more than 1000 Ah

Average Vacuum pressure (2012):

5.0 x 10⁻¹⁰ mb (without beam) 1.4 x 10⁻⁸ mb (100 mA, 240 bunches)

The vacuum pressure does NOT depend on the filling pattern.

 3.1×10^{11} photons per meter

Photoelectron dose: (Y ~ 0.1, C_{ch} = 194 mm)

$$d_{ch} = Y \frac{dN_{\gamma}}{ds} \frac{1}{C_{ch}} \int I dt = 3.33 \frac{10^{-7}}{\text{mm}^2} \int I dt$$

= 1.2 C/mm² (1000 Ah)

Scrubbing runs (March 2012)

Conditioning + Scrubbing: Benefits

Tune shifts (bunch train) after the scrubbing runs

240 bunches (8 ns bunch spacing)

Simulations with ECLOUD 4.0

PETRA III, 100 mA, different filling patterns, SEY: 1.5, 2.0, 2.5

Electron cloud (pattern 240)

Electron cloud (pattern 320)

Simulations with ECLOUD 4.0 (cont.)

PETRA III, 100 mA, different filling patterns, center density

Emittance growth 100 mA 60 x 6 not ok 100 mA 60 x 4 ok (threshold density $\sim 1.4e^{12} \text{ m}^{-3}$)

Simulation studies indicate an instability for the 60 x 6 pattern if the SEY is about 2.0

Summary

- > A vertical emittance growth has been observed for bunch trains with 8 ns and 16 ns bunch to bunch spacing.
- There a "upper-sidebands" in the vert. tune spectra with a clear build-up along a bunch train.
- A clear conditioning effect has been observed. For user runs filling patterns with 40 x 4 and 60 x 4 bunches were used in 2010. In 2011 it was possible to fill 240 bunches with a 32 ns bunch spacing.
- In 2012 two dedicated scrubbing runs have improved the situation. It is possible to use 320 bunches with 24 ns bunch spacing and no significant emittance growth.
- This "proves" that the observed emittance growth is really due to electron clouds.
- > The tune shift along a bunch train are not changed after the scrubbing runs.
- Simulations for different filling patterns indicate that the SEY < 2.0 after conditioning and scrubbing.
- Recently (May 16, 2012) 320 bunches with 24 ns bunch spacing have been used for user runs.

Thank you for your attention !

Acknowledgment:

I would like to thank my colleagues from DESY

Klaus Balewski, Michael Bieler, Joachim Keil, Alexander Kling,

Gajendar Kumar Sahoo

