Instabilities Simulations with Wideband Feedback Systems: CMAD, HeadTail, WARP

K. Li¹, H. Bartosik¹, J. Cesaratto², J. D. Fox², W. Höfle¹, M. Furman³, G. Iadorola¹, M. Pivi², C. Rivetta², G. Rumolo¹, R. Secondo¹, O. Turgut², S. Uemuda², J.-L. Vay³

¹ European Organization for Nuclear Research
 ² SLAC National Accelerator Laboratory
 ³ Lawrence Berkeley National Laboratory

Work supported by DOE

Outline

- i. Simulation models CMAD, HeadTail, WARP
- ii.Feedback system model
- iii.Damping the centroid motion
- iv.Electron cloud instabilities
- v. Damping the intra-bunch motion
- vi.Conclusions and outlook

C-MAD, HeadTail, WARP - Models

	CMAD	HeadTail	WARP
Language	Fortran	C++	Fortran with Python interface
Parallel	yes	no	yes
Optics	Smooth or lattice (MAD-X import)	Smooth or lattice (MAD-X import)	Smooth or lattice
PIC	2D FFT	2D FFT	AMR (includes space charge)
Binning	Constant space or constant charge	Constant space	Constant space
Distributions	Internal & external	Internal & external	Internal, external & build-up
Extras	IBS, radiation damping, quantum excitation	ZBASE impedance database	Build-up + tracking (strong-strong)

Feedback system implementation

Kevin Li

Feedback system - specifications

5 tap delay

Feedback system - specifications

- 5 tap delay
- FIR transfer functions (left)

 V_{c1}

V_{c2}

G

 $\Delta p_1 \Delta p_2 \Delta p_{Nsl}$

ECLOUD'12

Ampl.

Kicker

Feedback system - specifications

Y1 Y2 YNSI

 V_{in1}

V_{in2}

Receiver

FIR

FIR

FIR

- 5 tap delay
- FIR transfer functions (left)
- Kicker transfer functions (right)

Kevin Li

Centroid motion – gain scan

- Bandwidths:
 200MHz, 500MHz, 700MHz, 1GHz
- Perturbation: 2mm initial vertical offset \rightarrow monitor bunch response

Centroid motion – gain scan

- Bandwidths:
 200MHz, 500MHz, 700MHz, 1GHz
- Perturbation: 2mm initial vertical offset → monitor bunch response
- For high gains, the limited (200MHz) bandwidth makes the system become unstable

Centroid motion – gain scan

- Bandwidths:
 200MHz, 500MHz, 700MHz, 1GHz
- Perturbation: 2mm initial vertical offset → monitor bunch response
- For high gains, the limited (200MHz) bandwidth makes the system become unstable
- For all cases, the bunch response (centroid motion) to the initial perturbation is similar → the systems perform equally well

ERN

Comparision CMAD-HeadTail

- Perturbation: 2mm initial vertical offset
- Gain $g \approx 8.5e-3$

Kevin Li

CÉRN

Intensity	1.1e11 ppb	
Energy	26 GeV	
Emittances [epsx, epsy]	2.8, 2.8 microns	
Beta-functions [βx, βy]	42, 42 m	
Tunes [Qx, Qy, Qs]	26.130, 26.185, 0.0059	
E-cloud region	Bends	

		3	
Intensity	1.1e11 ppb	2	6
Energy	26 GeV		- 5 ·
Emittances [epsx, epsy]	2.8, 2.8 microns		μή] ⁿ ₉ 4
Beta-functions [βx , βy]	42, 42 m	-2	3
Tunes [Qx, Qy, Qs]	26.130, 26.185, 0.0059	-3 0 <u>100 200 300 400 500 600</u> Turn	2 0 100 200 300 400 500 600 Turn
E-cloud region	Bends	Cloud — 16 — 13.76	d density in 1e11 9.92 8
		— 11.52	— 6.08 —

• The instability threshold is around $\rho_{e} \approx 4e11 \text{ m}^{-3}$

Kevin Li

4.16 2.24 0.16

		4	
Intensity	1.1e11 ppb	3	
Energy	26 GeV		
Emittances [epsx, epsy]	2.8, 2.8 microns		
Beta-functions [βx , βy]	42, 42 m	-2 3	
Tunes [Qx, Qy, Qs]	26.130, 26.185, 0.0059	-4 20 20 30 40 50 60 20 Turn	³ ₂ 0 ⁰ ₂ 0 ⁰ ₃ 0 ⁰ ₄ 0 ⁰ ₅ 0 ⁰ ₆ 0 ⁰ Turn
E-cloud region	Bends	ρ = [1,16] >	k 1e11 m⁻³

• The instability threshold is around $\rho_{e} \approx 4e11 \text{ m}^{-3}$

Intensity	1.1e11 ppb	
Energy	26 GeV	
Emittances [epsx, epsy]	2.8, 2.8 microns	
Beta-functions [βx, βy]	42, 42 m	
Tunes [Qx, Qy, Qs]	26.130, 26.185, 0.0059	
E-cloud region	Bends	

- The instability threshold is around $\rho_{e} \approx 4e11 \text{ m}^{-3}$
- Unstable modes are {0, -1, -2}

Kevin Li

ECLOUD'12, 5-9 June 2012, La Biodola, Isola d'Elba

27 ECLOUD'12

$ECI - \rho_e \approx 6e11 \text{ m}^{-3}$

• Clear coherent motion above the instability threshold

$ECI - \rho_e \approx 6e11 \text{ m}^{-3}$

- Clear coherent motion above the instability threshold
- The mode evolution reveals the presence of predominantly modes {0, -1, -2} (shifted)

Intra-bunch – $\rho_e \approx 6e11 \text{ m}^{-3}$ – gain scan

- Perturbation: electron cloud
- Bandwidths: 200MHz, 500MHz, 700MHz, 1GHz

Intra-bunch – $\rho_e \approx 6e11 \text{ m}^{-3}$ – gain scan

- Perturbation: electron cloud
- Bandwidths:
 200MHz, 500MHz,
 700MHz, 1GHz
- For high gains, the limited (200MHz) bandwidth makes the system become unstable

Intra-bunch – $\rho_e \approx 6e11 \text{ m}^{-3}$ – gain scan

- Perturbation: electron cloud
- Bandwidths:
 200MHz, 500MHz,
 700MHz, 1GHz
- For high gains, the limited (200MHz) bandwidth makes the system become unstable
- A gain of 6e-3 appears to damp the ECI

$500MHz - \rho_e \operatorname{scan} - \operatorname{gain} = 6e-3$

• Coherent motion is damped within the range $\rho_{a} = [1,10] \times 1e11 \text{ m}^{3}$

$500MHz - \rho_e \operatorname{scan} - \operatorname{gain} = 6e-3$

- Coherent motion is damped within the range ρ_e = [1,10] x 1e11 m⁻³
- The power in modes {-1,0,1} is effectively diminished
- The remaining power appears to be distributed over a wide range of modes

$500MHz - \rho_e \approx 6e11 \text{ m}^{-3} - \text{gain} = 6e-3$

- Clear damping of the coherent motion
- Remaining power is distributed over modes {2,6}

Feedback power required

Kick applied to individual bunch slices by the feedback system

Same scale: Low feedback power is required to stabilize the beam in the presence of electron cloud

$500MHz - \rho_e \approx 14e11 \text{ m}^{-3} - \text{gain} = 6e-3$

- Clear re-emerging of the coherent motion
- Power is concentrated predominantly in modes {6} (shifted)

Conclusions & outlook

- Successful implementation of realistic feedback system into multi-particle instability codes
- Mode analysis of ECI reveals unstable modes up to mode 2 (for the investigated configuration)
- 200MHz feedback is insufficient to damp ECI
- 500MHz feedback provides damping within for gains > 6e-3
- Study the impact of noise on the feedback effectiveness

Thank you for your attention!

Kevin Li

