

Mitigation Strategy: Overview, including LHC and ILC

Mauro Pivi

on behalf of the ILC and LHC Electron Cloud Working Group

ECLOUD12 at Isola D'Elba Italy 5-8 June, 2012

Electron cloud in the Linear Colliders

- SLAC is coordinating the ILC electron cloud Working Group (WG)
- WG milestones: evaluations and recommendations on electron cloud mitigations that lead to reduction of ILC DR circumference from 17km to 6km (2006) and from 6km to 3km (2010)
- 2012 goal is to evaluate electron cloud effect with mitigations implemented in each DR region, in preparation for the ILC Technical Design Report 2012.

Recommendation of Electron Cloud Mitigations

Structured Evaluation of EC Mitigations

GOAL

Goal: select mitigation for arc BENDs

Efficay of Mitigation

Costs

Risks

Imact on Machine Performances

Criteria for the evaluation of mitigations: Working Group rating						
	Efficacy of Mitigation	Costs	Risks	Impact on Machine		
Rating	10	1	4	4		
Normalized Weighting	0.53	0.05	0.21	0.21		

EC Mitigation Evaluation – 4 Criteria

 Dedicated ILC DR Working Group Workshop Meeting to evaluate technologies and give recommendation on electron cloud mitigations

Efficacy

- Photoelectric yield (PEY)
- Secondary emission yield (SEY)
- Ability to keep the vertical emittance growth below 10%

Risk

- Mitigation manufacturing challenges:
 - Ex: ≤1mm or less in small aperture VC
 - Ex: Clearing electrode in limited space or in presence of BPM buttons
- Technical uncertainty
 - Incomplete evidence of efficacy
 - Incomplete experimental studies
- Reliability
 - Durability of mitigation
 - Ex: Damage of clearing electrode feedthrough

Cost

- Design and manufacturing of mitigation
- Maintenance of mitigation
 - Ex: Replacement of clearing electrode PS
- Operational
 - Ex: Time incurred for replacement of damaged clearing electrode PS

Impact on Machine Performance

- Impact on vacuum performance
 - Ex: NEG pumping can have a positive effect
 - Ex: Vacuum outgassing
- Impact on machine impedance
 - Ex: Impedance of grooves and electrodes
- Impact on optics
 - Ex: x-y coupling due to solenoids
- Operational
 - Ex: NEG re-activation after saturation

Summary of Electron Cloud Mitigation Plan for the International Linear Collider

Mitigation Evaluation conducted at ILC DR Working Group Workshop meeting

ILC Working Group Baseline Mitigation Recommendation

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber	
Alternate Mitigation	Amorphous Carbon/ NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

- Amorphous carbon not sufficiently tested in lepton machines under high radiation, yet
- Aggressive mitigation plan needed to obtain optimum performance for 3.2km positron damping ring and to pursue the high current option

- Thermal spray tungsten electrode and Alumina insulator
- 0.2mm thick layers
- 20mm wide electrode in wiggler
- Antechamber full height is 20mm

- 20 grooves (19 tips)
- 0.079in (2mm) deep with 0.003in tip radius
- 0.035in tip to tip spacing
- Top and bottom of chamber

Electron cloud assessment for ILC 2012 TDR: Plans

Electron cloud Build-up

Photon distribution

In BENDs with grooves
PI: LBNL

Beam Instability

Photon generation and distribution PI: Cornell U.

In WIGGLERS with clearing electrodes PI: SLAC

Input cloud density from build-up PI: SLAC

In DRIFT, QUAD, SEXT with TiN coating PI: Cornell U.

Photon distributions

- Used Synrad3d (Cornell U.) a 3D simulation code that include the ring lattice at input and chambers geometry
- Used lattice: DTC03 (latest)
- Computed absolute values of photon intensity distributions around the vacuum chamber for 4 magnetic environments
- Computed for realistic chamber (v2a, with antechambers and totally absorbing photon stops) with diffuse scattering and specular reflection
- Looked at dependence of rates on ring sections.
- Did not assume top-bottom symmetry, and included sextupoles.

G. Dugan Cornell U.

Use **Synrad3d** a 3D simulation code that includes the ring lattice at input and chambers geometry (photon stops, antechambers, etc.)

Assumptions for the Secondary Electron Yield (SEY)

- In the ILC DR, surface materials consists of:
 - TiN on aluminum substrate, in most of the ring
 - Copper in wiggler sections

- For our systematical evaluations, we have used SEY curves from in-situ measurements at CesrTA, PEP-II and KEK-B:
 - Conditioned TiN with SEY peak ~1
 - Conditioned Cu, with SEY peak ~1.2

SEY for processed TiN film coating

TiN CesrTA - "horizontal sample" 0 degree

POSINST Model for coated SEY vs CesrTA TiN meas, Inc angle = 25°

TiN meas: horiz., Jan-Jun 2010

email Walter Hartung (wh29@cornell.edu) or Joe Calvey (jrc97@cornell.edu) for data files

C:\\ Physics SEY \\ Mauro_Fred _SEY _Data _ 2003-2008\\ ASCII TRANSLATED FILES \\ 006061.DAT

SEY for processed Copper surface

Electron Cloud in Drift Regions, with Solenoid field (40 G)

Solenoid fields in drift regions are very effective at eliminating the

central cloud density

ECLOUD-DTC03 Wigg Sol: Cloud Density (e/m3) Averaged Over 4477.2 ns

J. Crittenden, Cornell U.

Electron Cloud in Quadrupoles

 Trapping of electron in quadrupole field: the electron cloud density does not reach equilibrium after 8 bunch trains.

Quadrupole in wiggler section

 The central cloud density reaches equilibrium in the Quadrupoles after few bunch trains

Electron Cloud in Quadrupoles

Electron cloud density (e/m³)

Electron energies (eV)

J. Crittenden, Cornell U.

Electron Cloud in arc Sextupoles

Electron cloud density (e/m³)

Electron energies (eV)

J. Crittenden, Cornell U.

- Thermal spray tungsten electrode and Alumina insulator
- 0.2mm thick layers
- 20mm wide electrode in wiggler
- Antechamber full height is 20mm

Effect of Clearing Electrodes in Wiggler Magnets

Modeling of clearing electrode: round chamber is used

Clearing Field (left) & potential (right)

L. Wang, SLAC

Effect of Clearing Electrodes on Electron Cloud in a Wiggler magnet

Arc Bend: Photoelectron emission distribution along the perimeter of the chamber cross section

M. Furman, LBNL

Bends: Overall average EC density: all cases (QE=0.05)

Bunch-front 20-sigma EC density (QE=0.05)

Bends: Summary table of results for n_e Compare SEY=0 and SEY=1 (units: 10¹⁰ m⁻³)

	DTC03
Overall density at end of train peak SEY=0	~4
peak SEY=~1	>~12
20-sigma density during train peak SEY=0	~2
peak SEY=~1	~5
Bunch-front, 20-sigma density peak SEY=0	~2
peak SEY=~1	~4

M. Furman, LBNL

Completing evaluation for ILC

Two more steps:

- 1) Estimate electron cloud in Bends with grooves implemented in vacuum chambers
- 2) Evaluate beam stability with the predicted level of electron cloud density for each element in the ring
- Before completing these studies, with implemented mitigations the ring cloud density is $^{\sim}$ 4 $\times 10^{10}$ e/m³ a factor 3 lower than the instability threshold estimated earlier in 2010 ...!

Choices of groove geometry

Let us be clear:

 In magnetic field regions: Triangular grooves are very effective and rectangular grooves are not as effective.

 In field-free regions: Rectangular grooves are very effective and triangular grooves are not as effective

- 20 grooves (19 tips)
- 0.079in (2mm) deep with 0.003in tip radius
- 0.035in tip to tip spacing
- Top and bottom of chamber

SEY simulation: grooved surface

SEY of Grooved Surface in ILC Dipole magnet (2.28kG)

1st case: Sey0=1.8 (Un-processed TiN, before installation in CesrTA)

2nd case: Sey0=1.0 (Processed TiN);

Simulated SEY of Grooved Surface

Groove shape used in simulation

Electron cloud mitigations in LHC complex

Main focus on:

- Scrubbing or conditioning in the LHC
- Amorphous Carbon coating for the SPS
- Single-bunch Feedback system under development for the SPS → LHC

Scrubbing

- Scrubbing: combined effect of stimulated gas desorption and carbon graphitization on surface
- Estimated 2 weeks of scrubbing for LHC
- (Comments. Additional effects to be considered: as electron cloud decrease, effect of scrubbing also diminishes =asymptotic behavior near SEY threshold, and slow desorption and evacuation of surface molecules in cold surfaces due to cryogenic repumping)

CERN

Demonstrated a-C coatings performance:

Coatings with maximum SEY close to 1 can be produced with high reliability

Reduction by 10⁴ of the ecloud current in SPS e-cloud monitors with LHC beam at 25 ns

M. Taborelli, CERN

Preparation for SPS magnet prototype coating

CAPEO9 Cambridge M.Taborelli

CERN

Amorphous carbon coating plans in the SPS

Plan 2013 (Long Shutdown 1):

- Coated Half cell already installed
- Coating of 12 main dipoles of SPS + 3 Quadrupoles to obtain 2 coated full cells. Instrumented with pressure gauges etc..

Plan 2018 (long shutdown 2):

 Coating of all main dipoles and quadrupoles (still under evaluation for half of the dipoles, possible conditioning)

[1] P. Costa Pinto and N. Bundaleski talks at ECLOUD12

Single-bunch Feedback system

SPS – simulations with feedback

E-cloud density: 5-6e11e/m³, 1.1e11 ppb, Bandwidth =200MHz-1GHz

Fixed gain, vary bandwidth 1.0055 × 10⁻⁷

Fixed bandwidth, vary gain

Damped emittance. Very encouraging preliminary results from simulations (HeadTail, CMAD, WARP)

Summary

- Methodical evaluation of electron cloud in ILC ongoing for Technical Design Report (2012)
- Evaluated photon rates and distributions with newly developed 3D code.
- Electron cloud density in all drifts with solenoid ~ 0.
- Evaluated cloud density in ILC DR quadrupoles of arc and wiggler sections, in sextupoles, in arc bends and in wigglers.
- Coming next: grooves in bends and instability evaluations.
- News: Cloud density already promisingly low.
- Concern: additional effect of incoherent emittance growth observed even at very low cloud density (more about it soon)
- Mitigations for LHC/SPS: soon scrubbing, then $\alpha\text{-C}$ coatings and single-bunch feedback