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1 Exercise on DM production of cosmic-ray antimatter

1.1 Estimate the annihilation rate needed to explain the positron flux mea-
sured at 100 GeV

Measurements of the positron flux at high energies by PAMELA, and then, AMS-02, revealed that
there must be a powerful source of positrons, different than cosmic-ray (CR) interactions with the gas
in the interstellar medium (ISM), that dominates the spectrum above several tens of GeV (See Fig. 1).

Figure 1: Positron flux measured by AMS-02 compared to the expectation of the secondary positron
flux. Credit: AMS-02 collaboration.

Given that WIMPs could produce a significant amount of positrons when decaying/annihilating,
one of the ideas that appeared to explain this “positron excess” was dark matter (DM). In this case,
one can use a simplified version of the leaky-box approximation to estimate the local flux of positrons
produced by DM at a given energy, Ee+ :

Qχ(Ee+ , r⊙)−
ne+

τleak
(Ee+ , r⊙) =

dne+

dt
(Ee+ , r⊙), (1)

for which we can find the steady state solution easily. Consider ρχ(r⊙) ≈ 0.4 GeV/cm3, mχ ≈
1 TeV and annihilation to the τ channel (χ+ χ −→ τ+τ−), which yields approximately

dNe+

dEe+
(Ee+ =

100GeV) ≈ 3.7 · 10−3 GeV−1.

Hint: The dominant time-scale for positrons of energies above tens of GeV is energy losses, mainly
due to inverse-Compton and Synchrotron losses. For a simple estimation of the local loss time, use the
expression:

τloss ≈ Ee/(
dE

dt
) =

4

3
σtγ

2
ec(UB + UCMB) ≈ 30.7

(
Ee

GeV

)−1 (
UB + UCMB

eV/cm3

)−1

Myr,
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where σt is the Thomson cross sections, c is the speed of light, γe is the Lorentz factor of the electrons,

UCMB ∼ 0.26 eV/cm3 is the CMB energy density and UB = B2

4π eV/cm3 is the magnetic field energy
density (where for local values one can use B∼ 3− 5µG).

————
Answer:
Eq. 1, assuming steady state (

dne+

dt (Ee+ , r⊙) = 0), becomes

Qχ(Ee+ , r⊙) · τleak(Ee+ , r⊙) = ne+(Ee+ , r⊙), (2)

where ne+ is the positron density per unit of energy, τleak is the dominant (effective) time-scale for
positrons of energy Ee+ to leak out and Qχ is the source term of DM annihilation to produce the
positrons, which is defined as

Qχ(Ee+ , r⊙) =
⟨σv⟩
2

ρ2χ(r⊙)

m2
χ

dNe+

dEe+
(Ee+), (3)

assuming DM as a Majorana particle. Here, ⟨σv⟩ is the annihilation rate to be estimated, ρχ(r⊙) ≈
0.4 GeV/cm3 is the local DM density, the DM mass can be assumed to be the one providing the

best-fit to the positron excess, mχ ≈ 1 TeV and
dNe+

dEe+
(Ee+) is the injection spectrum of positrons

produced per annihilation. For the latter, we can assume the τ channel (χ+ χ −→ τ+τ−), which, at

Ee+ = 100 GeV, yields approximately
dNe+

dEe+
(Ee+) ≈ 3.7 · 10−3 GeV−1 for a 1 TeV DM particle. To

convert the density of positrons per unit of energy into flux, one can simply use:
dϕe+

dE = c · ne+/(4π),
where c is the speed of light. Note that Eq. 2 is what you find neglecting all terms in the full diffusion
equation but the injection term and the energy loss term.

We have to solve for ⟨σv⟩ using Eq. 2, knowing that the measured local flux of positrons is
dϕAMS−02

e+

dE ≈ 2.5 · 10−10 cm−2 s−1 sr−1 GeV−1 at 100 GeV, and where τloss ∼ 1 Myr. Therefore, we
simply need the solve the following formula:

⟨σv⟩ =
2m2

χ

ρ2χ(r⊙)

1
dNe+

dEe+
τloss

dϕAMS−02
e+

dE

4π

c
∼ 10−23cm3/s, (4)

to reproduce the AMS-02 flux observed at Ee+ = 100 GeV.

Conclusion: This value is similar, within a factor of 2, to what has been typically found. As you
may notice, it is quite above the thermal relic cross sections, but it is also excluded by other indirect
DM searches, using, e.g. radio or from γ-ray observations (See, for instance, Refs. [A+11, B+09]).

The dominant source of high-energy positrons is expected to be pulsars. There are several theoret-
ical and observational arguments that support the idea that pulsars and their nebulae are positrons
factories that can efficiently inject accelerate electrons/positrons up to such energies, as it is discussed
in the main lectures..

1.2 Estimate the flux of antiprotons produced from DM at 10 GeV and
compare with the expected flux produced from cosmic-ray interactions

After AMS-02 published their observations of the local antiproton spectrum, different groups pointed
to a possible anomaly, an excess of antiprotons over the expected background at around 10 GeV. The
DM signal required to fit it was roughly compatible with the thermal relic cross sections and a DM
mass in the range of 40-90 GeV (See Fig. 2). Calculate the approximate flux of antiprotons that can be
produced by DM annihilation into the bb̄ channel and compare to the expected secondary antiproton
flux.
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Figure 2: Left panel: Comparison of the AMS-02 p̄/p ratio with the best-fit antiproton flux from DM
and CR interactions [CKK17]. Right panel: Contour plot indicating the parameter space (annihilation
rate vs DM mass) able to reproduce the p̄ excess and the Galactic Centre excess [CLH19].

1.2.1 Compute DM flux for thermal annihilation cross sections

Hint: The dominant time scale in this case is the diffusion time scale (effective time that CRs remain

confined in the Galaxy), τdiff (E) = H2

2D(E) , where H ≈ 4 kpc is the so-called halo height and D ∝ Eδ is

the effective diffusion coefficient (D ≈ 2.5·1028 cm2/s at 10 GeV). Take a value of
dNp̄

dEp̄
(Ep̄ = 10GeV) ≈

2.3 · 10−2 GeV−1 (corresponding to a 70 GeV DM particle annihilating in the bb̄ channel).

—————
Answer

Using Eq. 3 for this case, we get a value of Qp̄
χ(Ep̄ = 10GeV) ∼ 10−32 cm−3 s−1 GeV−1 (with

⟨σv⟩ = 2.3 · 10−26 cm3/s). Then, from Eq. 2 with τleak = τdiff ∼ 100 Myr [EMBA20], we get that

dϕp̄

dE
(Ep̄ = 10GeV) = Qp̄

χ(Ep̄ = 10GeV)× τdiff × c

4π
∼ 7 · 10−8 cm−2 s−1 sr−1 GeV−1.

This estimation is of the order of magnitude of the total antiproton flux observed at Earth, which
is much larger than the correct value you get with the full calculation. As can be seen from recent
analyses [CCD+22, DlTLWL24a] the best-fit cross sections of the excess are a bit lower, quite close to
⟨σv⟩ = 10−26 cm3/s.

Caveats: The simple version of the leaky-box approximation used previously is not reliable here,
because the local antiproton flux at 10 GeV has a larger contribution from antiprotons produced away
from our local neighborhood (i.e. the effective DM density changes from the assumed local DM density
due to propagation). In addition, other effects may become more relevant at this energy range: solar
modulation, reacceleration or convection.

Conclusion: We saw that the approximations made in the previous case are not applicable to the
estimation of the flux of antiprotons. However, the source term, that provides the production rate
at injection, can be used to compare the DM signal with that expected from the background (CR
collisions in the gas).
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1.2.2 Compare with CR production

The source term for the production of antiproton from CR interactions with the ISM gas is given by

QCR+ISM→p̄(Ep̄) =
∑
ISM

∑
CR

4π nISM

∫ ∞

0

dE
dσCR+ISM→p̄

dEp̄
(E,Ep̄)

dϕCR

dE
(E, r⊙), (5)

where nISM stands for the density of gas of each element (the ISM is mainly composed by H and

He with traces of heavier elements, with total density of approximately 1 cm−3),
dσCR+ISM→p̄

dEp̄
(E,Ep̄)

is the differential cross section of a primary CR nucleus interacting with a gas element to produce
antiprotons with energy Ep̄, and

dϕCR

dE is the differential local flux of that primary CR. The integral is
performed over the energy of the primary CR and the sums must be done for all primary CR species
and gas elements in the ISM.

However, since the most abundant gas element in the ISM is H and the primary CRs are dominated
by CR protons one can compute the source term (Eq. 5) considering only p-p collisions (by CR protons
with H gas in the ISM) and still get an estimation that is acceptable (accurate within tens of percent).
Furthermore, we will do another simplification to make this estimation quicker: since the source term
strongly peaks at around Ep = 70 GeV, we will only consider the proton flux and differential cross
section at Ep = 70 GeV and Ep̄ = 10 GeV to calculate Qpp→p̄.

Hint: There are different cross sections parametrizations recently developed for antiproton produc-
tion in CR interactions. You can quickly find the differential cross sections for this interaction in https:

//github.com/cosmicrays/DRAGON2-Beta_version/blob/master/data/Winkler-ap_pp.dat. The
local proton flux can be found in any AMS-02 publication.

—————
Answer
We have to solve for

Qp̄
CR(Ep̄ = 10 GeV) ∼ 4πnH

dσpp→p̄

dEp̄
(E = 70 GeV, Ep̄ = 10 GeV) ϕp(E = 70 GeV, r⊙). (6)

Using Eq. 6, and adopting a differential cross section
dσpp→p̄

dEp̄
∼ 5 · 10−2 mb/GeV for antiprotons

produced at Ep̄ = 10 GeV and a CR proton interacting with energy Ep = 70 GeV and a local proton
flux of ϕp ∼ 8 · 10−4 cm−2 s−1 sr−1 (See supp. Material of Ref. [A+15]), one gets a value around
Qp̄

CR(Ep̄ = 10 GeV) ∼ 4.5 · 10−31 cm−3 s−1 GeV−1.
Now, comparing the DM source term with this, we obtain:

Qp̄
DM

Qp̄
CR

∼
np̄
DM

np̄
CR

∼ 0.02 ,

which is not too far from the value that we find with detailed calculations. We show the antiproton
source term computed in the left panel of Fig. 3. Notice that this is a small fraction of the total flux,
making it more difficult to confirm given that the systematic uncertainties in these calculations are
greater than 10%, especially from cross sections or correlated errors in the AMS-02 measurements.

1.3 Estimation of Antinuclei production

Antinuclei are considered one of the most promising smoking guns for the study of DM, since the
production of such particles from CR interactions is very suppressed (see right panel of Fig. 4). In
the last years, the AMS-02 collaboration has claimed the detection of a few antinuclei events (See
Fig. 4), which challenge our current models of production of antihelium in the Galaxy. We can do
a similar calculation to that we did before to estimate the flux of an antinucleus produced from DM
annihilation/decay and from CR interactions with gas.
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Figure 3: Left panel: Source terms for the main interactions of CRs with ISM gas to produce p̄ at an
energy of 10 GeV, as a function of the projectile energy. Right panel: Cross sections for the production
of p̄ at an energy of 10 GeV for each of the main interaction channels.

Figure 4: Left panel: Representation of the events recorded by AMS-02 as a function of their charge.
Credit: Paolo Zuccon (MIAPP 2021). Right panel: Flux of antihelium-3 expected from CR interactions
compared to the sentitivity of AMS-02 [DLTLWL24b].

In the spherical coalescence approximation, the injection spectrum of an antinucleus Ā can be
approximated from the injection spectrum of the antiprotons and antineutrons produced

dN

dEĀ

∝
(

dN

dEp̄

)Z (
dN

dEn̄

)(A−Z)

, (7)

where A and Z are the atomic and mass number of the antinucleus.
This expression can be further simplified if considering that the production of neutrons and protons

is roughly the same (which is not strictly true, see, e.g., Ref. [Win17]). Adding also the constant factors
to the previous equation and using this simplification, one gets:

dN

dEĀ

(EĀ = Ep̄/A) ∼ BĀ

A

(4π)A−1

1(
E2

p̄ + 2mp̄Ep̄

)(A−1)/2

(
dN

dEp̄

)A

, (8)

where A is the atomic number of the antinucleus Ā that we are evaluating and BĀ is the coalescence
factor, defined as:

BĀ =

(
1

8

4

3
πp3c

)A−1
mĀ

mZ
p̄ m

(A−Z)
n̄

, (9)

being pc the coalescence momentum, which accounts for the distance in momentum space that A
antinucleons must be to form the antinucleus Ā, and it is commonly evaluated from accelerator data.
Eq. 8 must be evaluated at an antiproton energy Ep̄ = A · EĀ.
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This expression neglects correlations, which is especially important for DM production of antinuclei,
and would require to use event-by-event generators like Pythia or Herwig. However, for the DM mass
and channel that we use, this gives us a conservative underestimation (See Fig of Ref. [DK12]). In
turn, for the case of CR production, correlations become less important.

1.3.1 Compare the DM source term with that from CRs for the production of antihelium-
3 at 1 GeV, considering the same DM particle as in the previous question

Hint: Take pc ∼ 225 MeV (See Fig. 1 of Ref. [DLTLWL24b]) and compare with the source term for sec-

ondary production shown in Fig. 1 of Ref. [KDF18], whereQ
3He
pp (E3He ∼ 1GeV) ∼ 5·10−46 cm−3 s−1 GeV−1.

————
Answer:
First, we can compute the coalescence factor, which is

B3̄ =

(
1

8

4

3
πp3c

)2
m3He

m2
p̄mn̄

∼ 1.2 · 10−4 GeV4, (10)

The DM injection spectrum for the production of 3He is:

dN3He

dE3He

(E3He = 1GeV) ∼ B3
3

(4π)2
1(

E2
p̄ + 2mp̄Ep̄

) (dNp̄

dEp̄

)3

Ep=3GeV

. (11)

Therefore, the source term for DM becomes:

Q
3He
DM (E3He = 1GeV) ∼ ⟨σv⟩

2

ρ2χ(r⊙)

m2
χ

3B3

(4π)2
1(

E2
p̄ + 2mp̄Ep̄

) (dNp̄

dEp̄

)3

Ep=3GeV

(12)

Q
3He
DM (E3He = 1GeV) ∼ 6 · 10−41 cm−3 s−1 GeV−1 ,

which is pretty similar to the value obtained with a more detailed (but still analytical) calcula-
tion [KDF18].

Comparing both source terms, we see that we expect at least 104 times more production of 3He from
DM annihilation than from CR production (as shown in Fig. 1 of Ref. [KDF18]), making antinuclei a
powerful smoking gun for DM searches.

Note: Going to lower energies the difference between the expected DM and CR contribution
becomes larger. Do you have an explanation for this? Compute the threhold energy to produce
antideuterons and antihelium from p-p interactions.
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2 Secondary emission from light and heavy dark matter: Inverse-
Compton and Synchrotron

A variety of works have used secondary emissions to set constraints on light or heavy DM candidates,
below and above the WIMP mass range. For example, Ref. [LN24] studied the inverse-Compton
(IC) emission from the interaction of the electrons, produced in the annihilation/decay of DM, with
the radiation fields of the Galaxy. In this way, they were able to set constraints from Fermi-LAT
measurements for DM candidates whose prompt emission lies at energies much higher than those
accessible for Fermi. Similarly, Refs. [CFK+23] and [DlTLKB24] used a similar procedure, that
allowed to set constraints on sub-GeV DM and asteroid-mass primordial black holes, respectively, with
X-ray observations.

Similarly, the synchrotron emission can be used to set constraints on a broad set of DM candidates.
Radio synchrotron emission has been used to constrain WIMPs, but it can be used to constrain heavier
candidates, with emissions falling in the X-ray and gamma-ray energy ranges.

In this exercise, we will estimate and discuss how these secondary emissions can allow us to obtain
constraints for DM candidates beyond WIMPs.

2.1 Estimate the peak energy of inverse-Compton emission from a DM
particle decaying into electrons. Assume a mass of ∼ 100 MeV and
∼ 1 GeV for different radiation fields.

Essentially, IC scattering consists of high-energy electrons up-scattering ambient photons with energy
ERF (where RF stands for radiation field) to an energy γ2 ERF , where γ is the Lorentz factor of the
electrons injected. For our case, this means that for the decay into electrons of a DM particle with
mass mχ in a radiation field with photons at a given energy will be up-scattered to an energy:

E = γ2ERF → E ∼
(

mχ

2me

)2

ERF , (13)

as long as the injected energy of the photons is below the Klein-Nishina regime.
Since radiation fields aren’t monochromatic, one can estimate the energy at the peak emission,

using

Epeak ∼
(

mχ

2me

)2

Epeak
RF (14)

Given that the CMB photons are detected with temperature ∼ 2.73 K, one gets that the peak
energy of this photon field is ∼ 6 · 10−4 eV. Consider also infrared field, peaking around 9 · 10−3 eV
and starlight peaking around 1 eV (see Ref. [LV18]).

At which energies do you expect to have IC emission from the interaction of DM electrons with
these radiation fields? Which measurements could we use?

100 101 102 103 104 105 106 107
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E2
d dE

   
[G

eV
 c

m
2 s

1 s
r

1 ]

m = 1 TeV m = 100 TeV m = 10 PeV
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Prompt+IC

Figure 5: Left panel: IC emission for the decay of a 300 MeV DM particle into muons [CFK+23].
Right panel: Prompt and IC gamma–ray emission of heavy DM decaying in the τ channel.
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—————
Answer
For a 100 MeV particle, the peak IC emission will lie at around 6 eV, 0.09 keV and ∼ 10 keV for

the CMB, IR and starlight radiation fields, respectively. For a 1 GeV particle, these would be around
0.6 keV, 8.6 keV and ∼ 0.1 MeV.

Therefore, this constitutes a broad band emission that can be probed with multimessenger obser-
vations, covering from optical or UV observations, to X–rays and soft gamma–rays.

2.2 Estimate the peak frequency of synchrotron emission heavy DM

Synchrotron emission from the WIMPs decaying into electrons have been usually searched for in the
radio band. Using Eq. 15, we can compute the critical frequency of the emission from a heavy DM
particle decaying to electrons and find the frequency range where this emission can be expected. Take
a perpendicular (with respect to our line of sight) component of the magnetic field B⊥ ∼ 5µG. Can
this emission be observed at ground?

νcrit(GHz) =
3e

4πme
B⊥γ

2 ∼ 4.2

(
B

G

)
γ2 MHz. (15)

The critical frequency gives an estimation of the peak frequency generated by the synchrotron inter-
action of electrons with energy E and the perpendicular component of the magnetic field which they
interact with.

Calculate the expected frequency range for synchrotron emission from a 10 EeV, 200 GeV and a
1 GeV DM particle.

—————
Answer
The critical frequency is ∼ 20 MHz, ∼ 200 GHz and ∼ 2 · 1016 GHz (∼ 41 GeV), for the decaying

DM with masses 1 GeV, 200 GeV and 1 EeV (i.e. 109 GeV), respectively.
In the ultra-heavy case, Ref. [MP24] recently showed that the peak energy of this emission for

ultra-heavy DM can lie in the Fermi-LAT range and derived constraints on such ultra-heavy DM.
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3 The Galactic Centre Excess (GCE)

The GCE excess is one of the most debated astrophysical anomalies that have been related to DM.
Many years after the first evidences, there is a warm debate in the community about its origin. We
will quantitatively discuss the DM case and compare it to the pulsar case.

3.1 Determine the Annihilation Cross Section corresponding to the GCE
flux

There are several indications that suggest that DM can be the origin of this excess. Here we will see
that its observed intensity can be well compatible with a WIMP and discuss some other factors that
make this hypothesis appealing.

To match the predicted DM gamma–ray flux with the observed flux, one can use the flux formula,
Eq. 16. Suppose that the observed integrated flux (over a chosen energy range) is Φobs. Then

Φobs =
⟨σv⟩
8πm2

χ

Nγ J , (16)

where Nγ is the total number of photons produced per annihilation (integrated over the energy range
where the excess is observed).

Assuming an NFW profile (i.e. with an inner slope of γ = 1) the J-factor within the inner 20◦,
corresponding to ∆Ω ∼ 0.1 sr (that contains well the GCE), typically falls in the range

J ∼ 1022 − 1023 GeV2 cm−5

Let us take:

• mχ ≃ 50 GeV (see Table 4 of Ref. [CCW15]) so that m2
χ ≃ 2500 GeV2,

• Take as a representative value for the J-factor

J ≃ 7× 1022 GeV2 cm−5 . (17)

• a photon yield Nγ ∼ 20 (appropriate for the bb̄ channel in the 1–10 GeV range),

• an observed flux Φobs ∼ 10−6 ph/cm
2
/s.

—————
Answer
Inverting Eq. 16, we obtain

⟨σv⟩ =
8πm2

χ Φobs

Nγ J
. (18)

Let us perform the arithmetic step by step:

1. The numerator:
8π × 2500 ≃ 25.13× 2500 ≃ 6.28× 104 .

2. Multiplying by 10−6 gives 6.28× 10−2.

3. The denominator is 20× 7× 1022 = 1.4× 1024.

4. Thus,

⟨σv⟩ ≃ 6.28× 10−2

1.4× 1024
≃ 8π × 2500× 10−6

20× 7× 1022
= 4.5× 10−26 cm3/s .
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This value is of the same order as the canonical “thermal relic” cross section (∼3 × 10−26 cm3/s)
and is similar to the values reported in studies such as Ref. [DM21, DMW21].

Final Comments: This derivation illustrates one way to go from assumed halo properties and
the observed gamma–ray excess to an inferred value of the DM annihilation cross section. In a more
detailed analysis one would incorporate the full energy spectrum (using codes such as PPPC4DMID),
account for uncertainties in the inner halo profile, and perform precise numerical integrations over the
ROI. Nonetheless, the numbers obtained here are broadly in line with those reported in the literature.

3.2 Pulsar interpretation of the GCE

One of the leading explanations for the GCE is that the excess originates from an unresolved population
of millisecond pulsars (MSPs). We now explore a pulsar interpretation for the Fermi–LAT Galactic
GCE.

Let’s simplify again our calculation to get a simple estimate of the number of MSPs that are
required to account for the GCE. Assume that the integration over the spatial volume (over the region
where the pulsars are distributed) yields a total number of pulsars Ntot, and that their luminosities can
be characterized by an average luminosity ⟨L⟩ that can be estimated from observations or theoretical
arguments. Under these assumptions the total flux becomes

Φtot ≈
Ntot ⟨L⟩
4πd2eff

, (19)

where deff is an effective distance to the pulsar population. Since we are considering pulsars in the
Galactic bulge, we set

deff ∼ dGC ∼ 8.5 kpc .

Estimate the total number of MSPs that can account for the flux observed by Fermi-LAT. Take an
average gamma–ray luminosity per pulsar: ⟨L⟩ ∼ 1034 erg/s, which is based on several studies of the
GCE and of pulsar populations.

————
Answer:
Let’s reorder Eq. 19:

Ntot ∼
Φobs 4πd

2
eff

⟨L⟩
, (20)

First, convert the distance to centimeters. With

1 kpc ≈ 3.086× 1021 cm ,

we obtain
deff ≈ 8.5 kpc ≈ 8.5× 3.086× 1021 cm ≈ 2.62× 1022 cm .

Then,
4π d2eff ≈ 4π (2.62× 1022 cm)2 ≈ 4π × 6.86× 1044 cm2 .

Evaluating the denominator,

4π × 6.86× 1044 cm2 ≈ 8.62× 1045 cm2 .

Then, let’s convert the flux observed (ϕobs ∼ 10−6 ph cm−2s−1 at 1 GeV) into units of ergs/cm2/s:

E ϕobs ∼ 10−6 GeV cm−2s−1 ≈ 1.6 · 10−9 erg cm−2s−1

Thus,

Ntot ∼
1.6 · 10−9 erg cm−2s−1 8.62 · 1045 cm2

1034 erg/s
∼ 1400 , (21)
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Meaning that we expect around a thousand MSPs around the Galactic Centre to explain the GCE.
This value is well within the ballpark of more detailed estimations that take into account the spectral
emission of MSPs, their distribution and luminosity distribution function (dN/dL).

A more detailed treatment would involve performing the following integral, over the pulsar lumi-
nosity function and the spatial volume,

Φtot =

∫
dV

∫ Lmax

Lmin

dL
dN

dL

L

4πd2
, (22)

and would include the spectral shape of individual pulsars given by

dN

dE
∝ E−Γ exp

(
− E

Ecut

)
with Γ ∼ 1.5 and Ecut ∼ 2–3GeV. Such an analysis would allow one to compare the predicted energy
spectrum to the observed spectrum of the GCE. However, the simple estimate above shows that it
is plausible for a population of ∼ 103 pulsars with average luminosity ∼ 1034 erg/s to yield a total
gamma–ray flux of the correct order of magnitude.

3.2.1 Integrating the Luminosity Function

Let the differential number of pulsars per unit luminosity be given by

dN

dL
= AL−α , Lmin ≤ L ≤ Lmax , (23)

where α > 1 is the slope, and A is a normalization constant determined by the total number of pulsars,

Ntot =

∫ Lmax

Lmin

dN

dL
dL = A

∫ Lmax

Lmin

L−α dL = A
L1−α
max − L1−α

min

1− α
. (24)

Thus, the normalization is

A = Ntot
α− 1

L1−α
min − L1−α

max

. (25)

For an individual pulsar with luminosity L, the bolometric gamma–ray flux at Earth (assuming an
effective distance deff) is

Φ(L, deff) =
L

4πd2eff
. (26)

Then the total flux from the population is

Φtot =
1

4πd2eff

∫ Lmax

Lmin

L
dN

dL
dL =

A

4πd2eff

∫ Lmax

Lmin

L1−α dL . (27)

Performing the integral (for α ̸= 2)∫ Lmax

Lmin

L1−α dL =
L2−α
max − L2−α

min

2− α
, (28)

we obtain

Φtot =
A

4πd2eff

L2−α
max − L2−α

min

2− α
. (29)

Substituting for A from Eq. (24) we find

Φtot =
Ntot

4πd2eff

α− 1

2− α

L2−α
max − L2−α

min

L1−α
min − L1−α

max

. (30)
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Many studies find that a value of α ∼ 1.5 is reasonable. You can assume the luminosity to be in
the range of Lmin = 1033 erg/s to Lmax = 1035 erg/s. Use these values, along with a total number of
MSPs of 103 to estimate the total flux expected from this population of sources.

————
Answer:
For α = 1.5, we have

α− 1 = 0.5 , 2− α = 0.5 .

Then Eq. (30) becomes

Φtot =
Ntot

4πd2eff

0.5

0.5

L0.5
max − L0.5

min

L−0.5
min − L−0.5

max

=
Ntot

4πd2eff

√
Lmax −

√
Lmin

1√
Lmin

− 1√
Lmax

. (31)

Noting that √
Lmax −

√
Lmin

1√
Lmin

− 1√
Lmax

=
√
LminLmax , (32)

we obtain the simple result

Φtot =
Ntot

√
LminLmax

4πd2eff
. (33)

For representative numbers:

• Total number of pulsars: Ntot = 103,

• Minimum luminosity: Lmin = 1033 erg/s,

• Maximum luminosity: Lmax = 1035 erg/s,

• Effective distance: deff = 8.5 kpc.

First, we compute √
LminLmax =

√
1033 × 1035 =

√
1068 = 1034 erg/s .

Next, converting deff to cm:

1 kpc ≈ 3.086× 1021 cm =⇒ deff ≈ 8.5× 3.086× 1021 cm ≈ 2.623× 1022 cm .

Then,
4π d2eff ≈ 4π × (2.623× 1022)2 ≈ 4π × 6.88× 1044 ≈ 8.64× 1045 cm2 .

Thus, the total flux is

Φtot =
103 × 1034

8.64× 1045
≈ 1.16× 10−9 erg/cm

2
/s .

3.2.2 Including the Spectral Shape

Individual pulsars are observed to have gamma–ray spectra of the form

dN

dE
∝ E−Γ exp

(
− E

Ecut

)
, (34)

with a typical spectral index Γ ∼ 1.5 and an exponential cutoff energy Ecut ∼ 2–3 GeV.
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If we wish to express the differential flux (in, say, erg/cm2/s/GeV) we can write

dΦ

dE
= Φtot

S(E)

NS
, (35)

where

S(E) = E−Γ exp

(
− E

Ecut

)
describes the spectral shape and NS is the normalization factor ensuring that∫ Emax

Emin

S(E)

NS
dE = 1 .

In many cases the normalization is written in terms of the incomplete Gamma function. For example,
if we set Emin = 0 and Emax → ∞, one obtains

NS =

∫ ∞

0

E−Γ exp

(
− E

Ecut

)
dE = E1−Γ

cut Γ(1− Γ) ,

with the understanding that for Γ = 1.5 the Gamma function is evaluated at 1− 1.5 = −0.5 (and one
must be careful with the normalization). In a realistic analysis one would choose finite bounds (e.g.
Emin = 0.1 GeV and Emax = 100 GeV).

Thus, the full differential flux, given by Eq. (35), becomes:

dΦ

dE
=

Ntot

√
LminLmax

4πd2eff

E−Γ exp
(
− E

Ecut

)
NS

. (36)

3.2.3 Estimate the number of pulsars above the LAT sensitivity

Fermi–LAT detects a point source if its flux exceeds a threshold Fth. For the Galactic center region,
we can adopt a value of

Fth ∼ 3× 10−12 erg/cm
2
/s .

The flux from an individual pulsar of luminosity L is

Φ(L) =
L

4πd2eff
. (37)

A pulsar is detectable if Φ(L) ≥ Fth. Thus, the threshold luminosity Lth is determined by

Lth = 4πd2eff Fth . (38)

Then, the fraction of pulsars with luminosity L ≥ Lth is given by

f =

∫ Lmax

Lth

L−α dL∫ Lmax

Lmin

L−α dL

=
L 1−α
th − L 1−α

max

L 1−α
min − L 1−α

max

. (39)

For α = 1.5 we have 1− α = −0.5, so that

f =
L−0.5
th − L−0.5

max

L−0.5
min − L−0.5

max

. (40)

First, calculate the threshold luminosity. With that value, compute the fraction of pulsars with
L ≥ Lth and the number of expected MSPs detected by Fermi-LAT around the Galactic Centre.
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————
Answer:
We first convert the effective distance to centimeters. Using

1 kpc ≈ 3.086× 1021 cm ,

we have
deff ≈ 8.5 kpc ≈ 8.5× 3.086× 1021 cm ≈ 2.62× 1022 cm .

Then, calculating
4πd2eff ≈ 4π (2.62× 1022 cm)2 ,

we find:
4πd2eff ≈ 4π × (6.88× 1044 cm2) ≈ 8.64× 1045 cm2 .

Thus, from Eq. (38) we obtain:

Lth ≈ 8.64× 1045 cm2 × 3× 10−12 erg/cm
2
/s ≈ 2.59× 1034 erg/s .

Now, we proceed to compute the fraction of detectable sources, using Eq.38.

•
√
Lmin =

√
1033 = 1016.5. Numerically,

1016.5 ≈ 3.16× 1016 (in appropriate units) .

•
√
Lmax =

√
1035 = 1017.5 ≈ 3.16× 1017 .

•
√
Lth =

√
2.59× 1034 ≈ 1.61× 1017 .

Taking reciprocals, we have:

L−0.5
min =

1√
Lmin

≈ 1

3.16× 1016
≈ 3.16× 10−17 ,

L−0.5
th =

1√
Lth

≈ 1

1.61× 1017
≈ 6.21× 10−18 ,

L−0.5
max =

1√
Lmax

≈ 1

3.16× 1017
≈ 3.16× 10−18 .

Plug these values into Eq. (40):

f =
6.21× 10−18 − 3.16× 10−18

3.16× 10−17 − 3.16× 10−18
=

3.05× 10−18

2.84× 10−17
≈ 0.107 .

Thus, approximately 10.7% of the pulsars have luminosities above the detection threshold.
If the total number of pulsars is Ntot, then the number of pulsars detectable as point sources is

Ndet ≈ f Ntot .

For example, if Ntot = 103, then
Ndet ≈ 0.107× 103 ≈ 107 .

Hence, one expects that on the order of 100 pulsars should be individually detectable as point
sources by Fermi–LAT in the Galactic center region.

Conclusion
The framework outlined above provides one way to explain the spectral and morphological proper-

ties of the Galactic Center Excess via an unresolved population of pulsars. Adopting an NFW spatial
distribution for the pulsars mimics the centrally concentrated morphology observed in the excess, while
the power-law luminosity function with index α ∼ 1.5 and the typical spectral shape [Eq. (34)] are in
agreement with what is observed from Fermi–LAT pulsars. These choices yield a total integrated flux
that can be tuned to reproduce the GCE by adjusting the normalization of the luminosity function
and the total number of pulsars.
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4 Compute the sensitivity of Fermi-LAT for detecting dark
matter in dwarf galaxies

Dwarf galaxies are among the cleanest targets for DM searches, since the astrophysical backgrounds
are expected to be very low (with very little dust and an older stellar population) and contain few
stars in comparison to normal galaxies.

The gamma–ray energy flux (in erg/cm2/s) from a dwarf galaxy can be estimated using the ex-
pression

Φ =
⟨σv⟩
8πm2

χ

Nγ J . (41)

Considering that the sensitivity of Fermi-LAT around the GeV is

Φth = 2× 10−12 erg/cm
2
/s .

Compute the minimum annihilation rate at which Fermi-LAT can be sensitive, assuming the fol-
lowing:

• Detailed modeling of dwarfs typically yields astrophysical factors (when integrated over the
dwarf’s solid angle) in the range J ∼ 1018–1019 GeV2/cm5. Here, adopt

J = 1019 GeV2/cm5 .

• Nγ is the effective energy yield per annihilation (in erg). For the bb̄ channel the gamma–ray
spectrum typically peaks at a few GeV. As a rough estimate, if we assume an average energy per
photon of ∼ 2GeV and about 20 photons per annihilation, then the total energy yield is

20× 2GeV = 40GeV .

Converting to erg (1GeV ≈ 1.6× 10−3 erg), we have

Nγ ≈ 40× 1.6× 10−3 ≈ 6.4× 10−2 erg .

• Take mχ = 50GeV, so that m2
χ = 2500GeV2)

————
Answer:
Plugging Eq. (41) into this requirement:

⟨σv⟩
8πm2

χ

Nγ J ≥ 2× 10−12 erg/cm
2
/s .

Solving for ⟨σv⟩,

⟨σv⟩ ≥
8πm2

χ (2× 10−12)

Nγ J
.

Let us now substitute the numerical values:

• 8π ≈ 25.13,

• m2
χ = 2500GeV2,

• J = 1019 GeV2/cm5,

• Nγ = 6.4× 10−2 erg,

• Φth = 2× 10−12 erg/cm
2
/s.
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The numerator is:
8πm2

χ Φth ≈ 25.13× 2500× 2× 10−12 .

Calculate:
25.13× 2500 = 62, 825, and 62, 825× 2× 10−12 = 1.2565× 10−7 .

The denominator is:
Nγ J = 6.4× 10−2 × 1019 = 6.4× 1017 .

Thus,

⟨σv⟩ ≥ 1.2565× 10−7

6.4× 1017
cm3/s ≈ 1.964× 10−25 cm3/s .

Rounding, we find
⟨σv⟩min ∼ 2× 10−25 cm3/s .

For a 50 GeV dark matter particle annihilating into the bb̄ channel.
Conclusion For a typical dwarf spheroidal galaxy in the Milky Way with a mass of ∼ 107 M⊙, an

NFW profile characterized by rs ∼ 15 pc and a scale density of order 100M⊙/pc
3, and an integrated

astrophysical factor J ∼ 1019 GeV2/cm5, dark matter annihilating into the bb̄ channel (with mχ =
50GeV and an energy yield of ∼ 6.4× 10−2 erg per annihilation) produces a gamma–ray flux given by
Eq. (41). Requiring that the energy flux exceeds 2×10−12 erg/cm2/s leads to a minimum annihilation
cross section of approximately

⟨σv⟩min ∼ 2× 10−25 cm3/s .

This exercise shows that, for these assumed parameters, only if ⟨σv⟩ is larger than about 2×10−25 cm3/s
would the dwarf’s dark matter annihilation signal exceed the sensitivity threshold.
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