Dynamical Stabilization of the Fermi Scale

Francesco Sannino

LNF 2008

Part A

Introducing Technicolor

Precision Data

Flavor versus Heavy Quark Masses

Walking Dynamics

Natural Dark Matter candidates

Part B

Phase Diagrams of 4-Dimensional Gauge Theories

All orders (non)supersymmetric beta function

Ladder approximation

Lattice results

From Walking to Unparticle Physics

Part C

Minimal Walking Technicolor (MWT)

The MWT Lagrangian

"A Primer: LHC Phenomenology"

Playing with Unification

Part A

Dynamical EW Breaking

$$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Dots are partially fixed by Anomalies as well as other principles

$$\dots \rightarrow L(\text{New SM Fermions})$$

Technicolor

New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

Natural to use QCD-like dynamics.

 $SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$

$$\langle Q^f \tilde{Q}_{f'} \rangle = \Lambda_{TC}^3 \qquad \qquad \Lambda_{TC} \simeq 250 \ GeV$$

Electroweak Precision Measurements

Kennedy-Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini- Sirlin, Marciano-Rosner

$$\Pi_{XY}^{\mu\nu}(q^2) = \Pi_{XY}(q^2)g^{\mu\nu} + \cdots$$

LEP EWG Summer 2006

Large & Positive S from QCD-like TC

Peskin and Takeuchi, 90

Masses to SM Fermions

The need to Extend Technicolor

Different Approaches

Scalar-less New Gauge Interactions (Extended TC)

Marry SUSY and Technicolor

.

Add New Scalars in the Flavor Sector

Extended Technicolor

Beta - Terms

 $m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC}$

Gamma - Terms

$$\frac{1}{\Lambda_{ETC}^2} (\bar{s}\gamma^5 d) (\bar{s}\gamma^5 d) + \frac{1}{\Lambda_{ETC}^2} (\bar{\mu}\gamma^5 e) (\bar{e}\gamma^5 e) + \dots$$

 $\Lambda_{ETC} \ge 10^3 \Lambda_{TC}$

Too small Top mass if

 $<\bar{Q}Q>_{ETC}\approx<\bar{Q}Q>_{TC}\sim\Lambda_{TC}^3$

Walking versus Running

Near Conformal Properties

Why the walking can help?

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

<u>QCD-Like</u>

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \, \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim \left(\left(\Lambda_{ETC}/\Lambda_{TC}\right)^{\gamma_m(\alpha^{\star})}\right)$$

Fermion Mass Enhancement

$$m_{\rm f} \approx \frac{g_{ETC}^2}{\Lambda_{ETC}^2} < \bar{Q}Q >_{ETC} = \frac{g_{ETC}^2}{\Lambda_{ETC}^2} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha^*)} < \bar{Q}Q >_{TC}$$

S in Walking Technicolor

$$S_{\text{pert}} = \frac{1}{6\pi} \frac{N_f}{2} d(R)$$

$$S_{WTC} < S_{TC}$$

Appelquist, F.S.

However we will take:

 $S_{WTC} \approx S_{\text{pert}}$

Besides

S from extra Leptons

Fermions :
$$\psi_L = \begin{pmatrix} \psi_{1L} \\ \psi_{2L} \end{pmatrix}$$
, ψ_{1R} , ψ_{2R}
Hypercharge : Y , $Y + \frac{1}{2}$, $Y - \frac{1}{2}$

$$S_{\text{Leptons}} = \frac{1}{6\pi} \left[1 - 2Y \ln\left(\frac{M_1}{M_2}\right)^2 + \frac{1 + 8Y}{20} \left(\frac{m_Z}{M_1}\right)^2 + \frac{1 - 8Y}{20} \left(\frac{m_Z}{M_2}\right)^2 + O\left(\frac{m_Z^4}{M_i^4}\right) \right]$$

$$M_{1,2}^2 \gg m_Z^2$$

Rule:

Find Walking Theories with EW embedding minimizing S

Identified Many EW Viable Walking and Custodial TC Models

Minimal Walking Technicolor (MWT)

Higher Dimensional Representations

Beyond Minimal Walking Technicolor

Partially EW Gauged Technicolor

Split Technicolor

Additional Fermions in SM

Custodial TC

Similar to BESS models of Casalbuoni et al.

F.S. - Tuominen 04 Dietrich - F.S. - Tuominen 05 Dietrich - F.S. 06

Ryttov, F.S. 06

Appelquist, F.S. 98 Foadi, Frandsen, F.S. 07

Dark Matter

 $\frac{\Omega_{DM}}{\Omega_B}\sim 5$

What if DM is due to an asymmetry?

A particle similar to the nucleon

But electrically neutral

At most EW-type cross sections

Great if connected to the Electroweak Symmetry Breaking sector of the SM

Technicolor is a natural example

Technibarion is similar to the nucleon TB number like the B number At most EW-type cross sections EW scale and interactions built in

> Nussinov, 86 Barr - Chivukula - Farhi 90 Gudnason - Kouvaris - F.S. 06

Naive estimates

$$\frac{m_{TB}}{m_p} \approx \frac{1 \text{ TeV}}{1 \text{ GeV}} = 10^3$$

$$\frac{TB}{B} \propto \exp\left[-\frac{m_{TB}(T^*)}{T^*}\right] \sim 10^{-3} \qquad T^* \sim 200 \text{ GeV}$$

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{TB}{B} \frac{m_{TB}}{m_p} \sim \mathcal{O}(1)$$

Part B

Progress in Strong Interactions

Phase Diagram of Gauge Theories

New Limits for Strongly Interacting Theories

All order beta function for nonsupersymmetric theories

The 2 index Symmetric-Theory

Here Q and \widetilde{Q} are Weyl fermions.

The A-type is obtained by substituting $\Box \Box$ with \Box .

Phase Diagram for the Symmetric Theory

F.S. - Tuominen 04

Using Ladder Approximation

Is this the minimal walking theory?

Non-SUSY Phase Diagram for HDRs

SUSY Phase Diagram for HDRs

Intriligator-Seiberg

All orders beta function

$$\beta(g) = -\frac{g^3}{(4\pi)^2} \frac{\beta_0 - \frac{2}{3}T(r)N_f\gamma(g^2)}{1 - \frac{g^2}{8\pi^2}C_2(G)\left(1 + \frac{2\beta_0'}{\beta_0}\right)}$$

$$\gamma = -d\ln m/d\ln \mu$$

$$\beta_0 = \frac{11}{3}C_2(G) - \frac{4}{3}T(r)N_f$$

$$\beta_0' = C_2(G) - T(r)N_f$$

Ryttov and F.S. 07

Bounds on the Conformal Window

$\beta = 0 \qquad \longrightarrow \qquad \gamma = \frac{11C_2(G) - 4T(r)N_f}{2T(r)N_f}$

Unitarity of the Conformal Operators demands:

$$\gamma \le 2$$

Ryttov and F.S. 07

Non-SUSY Phase Diagram Bound

Landscape of the Unparticle World

Georgi 07

Information on nonperturbative aspects of HDRs

Part C

The Minimal Walking Theory

2 Adj. Dirac Flavors of SU(2)

$$Q_L^a = \begin{pmatrix} U^a \\ D^a \end{pmatrix}_L, \quad U_R^a, \quad D_R^a \qquad a = 1, 2, 3$$

$$Y(Q_L) = \frac{y}{2}$$
 $Y(U_R, D_R) = \left(\frac{y+1}{2}, \frac{y-1}{2}\right)$

$$\mathcal{L}_{L} = \begin{pmatrix} N \\ E \end{pmatrix}_{L} \qquad N_{R} \qquad E_{R}$$
$$Y(\mathcal{L}_{L}) = -3\frac{y}{2} \qquad Y(N_{R}, E_{R}) = \left(\frac{-3y+1}{2}, \frac{-3y-1}{2}\right)$$

 $\mathcal{N} = 4$ super Yang-Mills

The MWT Lagrangian

$$\mathcal{L}_{H} \rightarrow \left[\frac{1}{4} \mathcal{F}^{a}_{\mu\nu} \mathcal{F}^{a\mu\nu} + i\bar{Q}_{L}\gamma^{\mu}D_{\mu}Q_{L} + i\bar{U}_{R}\gamma^{\mu}D_{\mu}U_{R} + i\bar{D}_{R}\gamma^{\mu}D_{\mu}D_{R} + i\bar{L}_{L}\gamma^{\mu}D_{\mu}L_{L} + i\bar{N}_{R}\gamma^{\mu}D_{\mu}N_{R} + i\bar{E}_{R}\gamma^{\mu}D_{\mu}E_{R} \right]$$

$$\mathcal{F}^{a}_{\mu\nu} = \partial_{\mu}\mathcal{A}^{a}_{\nu} - \partial_{\nu}\mathcal{A}^{a}_{\mu} + g_{TC}\epsilon^{abc}\mathcal{A}^{b}_{\mu}\mathcal{A}^{c}_{\nu} \qquad a, b, c = 1, \dots, 3$$

$$D_{\mu}Q_{L}^{a} = \left(\delta^{ac}\partial_{\mu} + g_{TC}\mathcal{A}^{b}_{\mu}\epsilon^{abc} - i\frac{g}{2}\vec{W}_{\mu}\cdot\vec{\tau}\delta^{ac} - ig'\frac{y}{2}B_{\mu}\delta^{ac}\right)Q_{L}^{c}$$

What you see is "not" what LHC will see

LHC effective theory

 $\mathcal{L}(\text{Composites}) + \mathcal{L}(\text{Mixing with SM}) + \mathcal{L}(\text{New Leptons}) + \mathcal{L}(\text{SM} - \text{Higgs})$

Low Energy Scalar Sector

 $M_{ij} \sim Q_i^{\alpha} Q_j^{\beta} \varepsilon_{\alpha\beta}$

Low Energy Vector Sector

 $A_i^{\mu,j} \sim Q_i^{\alpha} \sigma^{\mu}_{\alpha\dot{\beta}} \bar{Q}^{\dot{\beta},j} - \frac{1}{4} \delta_i^j Q_k^{\alpha} \sigma^{\mu}_{\alpha\dot{\beta}} \bar{Q}^{\dot{\beta},k}$

$$A^{\mu} = \begin{pmatrix} \frac{a^{0\mu} + v^{0\mu} + v^{4\mu}}{2\sqrt{2}} & \frac{a^{+\mu} + v^{+\mu}}{2} \\ \frac{a^{-\mu} + v^{-\mu}}{2} & \frac{-a^{0\mu} - v^{0\mu} + v^{4\mu}}{2\sqrt{2}} \\ \frac{x^{\mu}_{UD} - s^{\mu}_{UD}}{2} & \frac{x^{\mu}_{DD}}{2} \\ \frac{x^{\mu}_{UD}}{\sqrt{2}} & \frac{x^{\mu}_{UD} - s^{\mu}_{UD}}{2} \\ \frac{x^{\mu}_{UD} + s^{\mu}_{UD}}{\sqrt{2}} & \frac{x^{\mu}_{DD} - s^{\mu}_{UD}}{2} \\ \frac{x^{\mu}_{UD} + s^{\mu}_{UD}}{2} & \frac{x^{\mu}_{DD}}{\sqrt{2}} \\ \frac{a^{+\mu} - v^{+\mu}}{2} & \frac{-a^{0\mu} + v^{0\mu} - v^{4\mu}}{2\sqrt{2}} \\ \end{pmatrix}$$

Comprehensive Effective Technicolor Lagrangian

Vector Mesons

Yukawas

** Link to MWT via Modified Weinberg Sum Rules **

Written in a renormalizable form

With imposed constraints from Precision Data

A working technicolor benchmark

Foadi, Frandsen, Ryttov & F.S. 07

MWT versus EWPD

LEP EWG Summer 2006

 $100 \text{ Gev} < M_1 < 800 \text{ Gev}$

Y=-3/2 for Leptons

 $100 \text{ Gev} < M_2 < 1000 \text{ Gev}$

$$S_{\text{Leptons}} = \frac{1}{6\pi} \left[1 - 2Y \ln\left(\frac{M_1}{M_2}\right)^2 + \frac{1 + 8Y}{20} \left(\frac{m_Z}{M_1}\right)^2 + \frac{1 - 8Y}{20} \left(\frac{m_Z}{M_2}\right)^2 + O\left(\frac{m_Z^4}{M_i^4}\right) \right]$$

LHC Phenomenology

In collaboration with

A. BelyaevR. FoadiM. T. FrandsenM. O. Jarvinen

A primer/work in progress

Vector-Axial Mass Splitting

Within the LHC reach for small values of S if $M_V > M_A$

Vector-Axial Decay Widths

Vector wider than the axial 'cause of the decay V->2A

Vector Resonances Branching Ratios

BRs for different Composite Higgs Masses BR in WW drops and rises (small S)

Axial Resonances Branching Ratios

BRs for different Composite Higgs Masses

Vector & Axial Direct production

Associate Higgs Production

Vanishing for finite values of the axial mass: small S

Playing with Unification

Farhi-Susskind, 79 Gudnason-Ryttov-F.S. 06 1 - loop running for SU(n)

$$\alpha_n^{-1}(\mu) = \alpha_n^{-1}(M_Z) - \frac{b_n}{2\pi} \ln\left(\frac{\mu}{M_Z}\right)$$

Degree of SU(3)xSU(2)xU(1) Unification

$$B_{Th} \leftarrow \frac{b_3 - b_2}{b_2 - b_1} = \frac{\alpha_3^{-1} - \alpha^{-1} \sin^2 \theta_w}{(1 + c^2)\alpha^{-1} \sin^2 \theta_w - c^2 \alpha^{-1}} \to B_{Exp}$$

Unification Scale

$$M_{GUT} = M_Z \exp\left[2\pi \frac{\alpha_2^{-1}(M_Z) - \alpha_1^{-1}(M_Z)}{b_2 - b_1}\right]$$

Adding Adjoint SM Matter

Minimal Walking Technicolor + SM Adjoint Matter

Colored Octet of Majorana Particles

Weak Triplet of Majorana Fermions

Extra SM Weyl Singlet

$$b_{3} = \frac{4}{3}N_{g} - 11 + 2$$

$$b_{2} = \frac{4}{3}(N_{g} + 1) - \frac{22}{3} + \frac{4}{3}$$

$$b_{1} = \frac{4}{3}(N_{g} + 1)$$

Gudnason-Ryttov-F.S. ph/0612230

Bajc-Senjanovic ph/0612029

 $B_{\rm Th} = 13/18 = 0.72(2)$ versus $B_{\rm Exp} \simeq 0.72$

What LHC can see and how may it deceive you

- Composite States: Technirho, composite (light) Higgs
- Detect Light Higgs: "Elementary or Composite ?"
- Study: pp -> HW, pp -> HZ. pp->HW (enhanced)
- 4th Family of Leptons no Quarks

What LHC can see and how may it deceive you

- wino/bino/gluino-like produced. Have you seen SUSY, WTC or ... ?
- Study their couplings to SM fermions

Unpleasant scenario:

• WW scattering is unitarized at the tree level up to 4 TeV with new vectors states of about 1.5 TeV. LHC and ILC will not dicover! (Foadi and FS 08)

Summary

- Introduced different types of viable technicolor theories
- Phase diagram of Higher Dimensional Representations
- Presented Minimal Walking Technicolor
- Benchmark for "any" serious model breaking dynamically the electroweak symmetry and passing LEP I & II precision tests.
- Dark Matter as a technibaryon
- Unification

Unifying also TC Cartoon!

MWT versus EWPD

46 Gev < $M_1 < 800$ Gev

Y=-1/2 for Leptons

 $100 \text{ Gev} < M_2 < 1000 \text{ Gev}$

DD - Technibaryon as DM

Amount of LTB dark matter as function of LTB mass with L' = 0, L = B

Gudnason, Kouvaris and F.S. 06

Constrained by CDMS to be at most only a 40-60% fraction of DM
Cosmological Constant Problem

• Why is empty space so nearly empty?

$$\rho_{vac}{<}10^{\text{-}46}GeV\ ^{4}\approx 10^{\text{-}29}\ g\ cm^{\text{-}3}$$

• Standard Model sets the scale to:

 ρ_{sm} >108GeV 4

• Mismatch by 54 order of magnitude!!

Dark Matter in MWT

a) Heavy Neutrino for y=1/3.

Kainulainen, Tuominen, Virkajärvi. 06

b) Dark Majorana

Kouvaris 07

TB Dark Matter Beyond MWT

SU(4), 8 flavors, only 2-flavors EW gauged

$$\epsilon_{t_1 t_2 t_3 t_4} Q_L^{t_1 t_2, f} Q_L^{t_3 t_4, f'} \epsilon_{ff'}$$

Dietrich-F.S. 06

Cannot be easily constrained by CDMS

Higgsless versus Higgsfull

 $\frac{M_H}{M_V} > 1$

 $\frac{M_H}{M_V} \le 1$

Spectrum of Hadronic/Technihadronic States

Using 't Hooft Large N and Unitarity in Pion-Pion Scattering in QCD

Vector Meson is a quark-antiquark state:

 $\rho(770)$

Broad Sigma of multiquark nature

 $f_0(600)$

F.S. & Schechter, 95 Harada, F.S. and Schechter, 03 Caprini, Colangelo,Leutwyler 05 Maiani,Piccinini, Polosa, Riquer 04 F.S. and Schechter, 07

Higgsless: 't Hooft Extension

$$M_{T\rho} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}}{\sqrt{N_D N_{TC}}} m_{\rho} \qquad v_0 \sim 250 \text{GeV}$$

$$M_{Tf_0} = \frac{\sqrt{2}v_0}{F_{\pi}\sqrt{N_D}} \left(\frac{N_{TC}}{\sqrt{3}}\right)^{\frac{p-1}{2}} m_{f_0} \qquad p \ge 1$$
ES.07
$$N_D = \frac{N_{TF}}{2} \qquad 1.4 \qquad M_{T\rho}(\text{TeV})$$

$$N_D = 2 \qquad 0.9 \qquad 0.8 \qquad 0.7 \qquad M_{Tf_0}(\text{TeV}) \qquad M_{Tf_0}(\text{TeV})$$

9

Dark Matter in MWT

a) Heavy Neutrino for y=1/3.

Kainulainen, Tuominen, Virkajärvi. 06

b) Dark Majorana

Kouvaris 07

TB Dark Matter Beyond MWT

SU(4), 8 flavors, only 2-flavors EW gauged

$$\epsilon_{t_1 t_2 t_3 t_4} Q_L^{t_1 t_2, f} Q_L^{t_3 t_4, f'} \epsilon_{ff'}$$

Dietrich-F.S. 06

Cannot be easily constrained by CDMS

S - T

S-measures the left - right type current correlator

$$S = -16\pi \frac{\Pi_{3Y}(m_Z^2) - \Pi_{3Y}(0)}{m_Z^2}$$

T-measures deviations from

$$m_{\rm W}^2 = \cos^2 \theta_{\rm W} \, m_{\rm Z}^2$$

$$T = 4\pi \frac{\Pi_{11}(0) - \Pi_{33}(0)}{s_W^2 c_W^2 m_Z^2}$$

Conditions

Universe Electric Neutrality

Chemical Equilibrium

EW Sphaleron Processes, Kuzmin-Rubakov-Shaposhnikov

TB - B violated at High Energies & approx. conserved at EW

$M_H/M_V < 1$ in MWT theories

$$M_{T\rho} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}\sqrt{2}}{\sqrt{N_D N_{TC}(N_{TC} \mp 1)}} m_{\rho}$$

$$M_{Tf_0} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}\sqrt{2}}{\sqrt{N_D N_{TC}(N_{TC} \mp 1)}} m_{f_0}$$
E.S. 07

