Study of the performances of Hybrid Pixel with Atlas FE-I4

Nicola Neri INFN - Sezione di Milano 4 November 2011

Outline

- Different L0 solutions in FastSim
- First results
- Summary

L₀ solutions: striplets vs Hybrid pixels

Hybrid pixels with Atlas FE-I4 chip

Hybrid pixels with Atlas FE-I4 chip

- efficiency = 99.9%

Hybrid pixel solution

Module cross section

Decay vertex resolution

Tag side vertex resolution

Δt resolution

Δt error distribution

10

S per event error

Summary

- Preliminary results show that there is a sizable worsening of the performances when using Atlas FEE (50x250) FE-I4 chip.
- If the Atlas FEE FE-I4 could be used in the rotated configuration (250x50) the performances would be comparable with the Hybrid Pixel solution developed within the SuperB R&D.

Backup slides

Introduction

- The baseline in FastSim for the Silicon Vertex Tracker (SVT) of SuperB consists in a 6 layer silicon detector;
- an additional Layer0 (L₀), at smaller radius, was introduced in order to maintain adequate proper-time resolution for B decays, in presence of a reduced center-of-mass boost: in BaBar was $\beta\gamma$ =0.56, in SuperB will be $\beta\gamma$ =0.24;
- the angular coverage of the SVT will reach ±300 mrad in the FW-BW direction;
- the outer layers (L_4-L_5) will have similar arch shape as in BaBar, and L_1-L_5 layers will be placed at almost identical radial position as in BaBar;
- the layer L₀ solution for the SVT baseline in FastSim (as today) is striplets: 200µm silicon, 0.4 % X₀, 8µm hit resolution.

I. SuperB baseline in Fast Sim:

- SVT baseline: L0 + L1-L5 strip detectors, ±300 mrad angular coverage;

Hybrid Pixel solution is reaching BaBar reference for S (sin(2 β)) per event sensitivity with L₀ radius ~1.0 cm. Striplet solution can afford a larger L₀ radius ~2.0 cm where bkg is lower.

Striplet vs Hybrid Pixels vs degraded hit efficiency

Striplet performance vs degraded hit resolution

Nominal resolution 8 μ m. Considering 50% worsening (12 μ m) from high occupancy in L₀. Rough estimate (to be studied in detail) but seems to be a second order effect.

Impact on S per event error

Background rate in L₀

Plans for further studies

- Update of FastSim configuration:
 - modeling of material budget for L_0 solutions for striplets and pixels according to recent developments;
 - possible changes in detector geometry (e.g. radius of layers);
- Implement a more realistic model for striplets in FastSim, with strips tilted at 45 degrees wrt detector.
- Evaluate impact of bkg hits on hit resolution and pattern recognition using FastSim.
- Should we consider time-dependent measurements at DDbar threshold? With E_{cm}~ 4 GeV the average momentum of particles is reduced and material budget in SVT is more relevant.

Hit Merging and PatRec Confusion in FastSim

- Reference: Doug Roberts talk at Orsay 2009, "Hit Confusion".
- In FastSim there is the possibility of evaluating the impact of bkg on hit resolution and on pattern recognition quality.
 - Hit Merging depends on resolution of the detector;
 - Pattern Recognition quality depends on the resolution of the track;
- Work To Do: PatRec Confusion code is corrently broken (Dave Brown will fix it) and striplet model is not currently modeled correctly in FastSim (I will work on that). That requires changes in PacDet, PacEnv, PacTrk packages.

angular coverage in CM₂₃~ 95% (BaBar SVT ~89%)

modules are symmetric wrt the IP.

Striplet solution

Module cross section

Si sensor overlap 3.4%

 $\begin{array}{l} 0.14\% \ X_{0} \\ 0.21\% \ X_{0} \\ 0.05\% \ X_{0} \end{array} \\ Total = 0.40\% \ X_{0} \end{array}$

Pinwheel layout for Lo courtesy of F. Bosi

Mechanical design can be considered valid also for Hybrid Pixel solution though small changes could be applied when finalized design will be ready.

L₀ solutions and SVT material

Total SVT material is about 3.3% (2.4%) X_0 for L_0 Hybrid pixel (Striplets) solution.