

Euclid-INFN@TO Activity Report 2024

Funded by the European Union NextGenerationEU

Istituto Nazionale di Fisica Nucleare Sezione di Torino

Stefano Camera

Dipartimento di Fisica, Università degli Studi di Torino, Italy

Stefano Camera [Associate Professor]

Interface between theoretical and observational cosmology; multi-wavelength synergies

Euclid Builder, ECPG-S member, DR1 KP-JC-1 Coordinator

Francesco Pace [Researcher]

Theoretical tools for linear and non-linear perturbations; comparison of theory vs data vs N-body simulations

SWG-Theory WP7 Lead

Particle dark matter modelling and indirect detection; multi-wavelength synergies

Cross-correlation of Euclid's clustering/lensing and gamma ray maps

Benedict Bahr Kalus [Postdoctoral Researcher]

Cosmology w/ Euclid and SKAO pathfinders/ precursors in auto- and cross-correlations

Giulia Piccirilli [Postdoctoral Researcher]

Cosmology w/ Euclid and SKAO pathfinders/ precursors in auto- and cross-correlations

Sam Rossiter [3rd-yr PhD Student]

Nicolao Fornengo [Full Professor]

Lorenzo Fatibene [Full Professor]

General relativity and extended theories of gravity

Covariant metrologic conventions to fill the gap between theory and experiments

Matteo Luca Ruggiero [Researcher]

General relativity and extended theories of gravity

Congruence of light like geodesic trajectories

Modelling of relativistic corrections to galaxy clustering bispectrum

Federico Montano [1st-yr PhD Student]

Detection of relativistic effects in power spectrum (cross-correlations, multitracer, flux-tomography)

Jiakang (Jack) Han [1st-yr PhD Student]

Forecasts for CIBclustering/lensing crosscorrelations

Stefano

- Who are we?
 - members (~30% w/ management roles and ~70% working on projects)

• Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior

• Who are we?

- Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior members (~30% w/ management roles and ~70% working on projects)
- Proficiencies and know-how
 - Large-scale structure of the Universe; cosmological perturbations (linear and non-linear regimes); extended models of gravity for dark matter and dark energy; modelling of power spectra in Fourier and harmonic space; novel observables and multi-wavelength synergies; development of techniques to detect of yet-unobserved effects

Euclid-INFN@TO Activity Report 2024 11 · IX · 20

• Who are we?

- Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior members (~30% w/ management roles and ~70% working on projects)
- Proficiencies and know-how
 - Large-scale structure of the Universe; cosmological perturbations (linear and non-linear regimes); extended models of gravity for dark matter and dark energy; modelling of power spectra in Fourier and harmonic space; novel observables and multi-wavelength synergies; development of techniques to detect of yet-unobserved effects
- Involvement in the Euclid Consortium
 - Galaxy Clustering, Weak Lensing, Theory, and CMBX Science Working Groups (SWGs) Inter SWG Taskforces (ISTs) for Forecasts, Likelihood, and Non-linearities

 - Diversity Committee, Publication Group, pre-launch and DR1 Key Project (KP) coordination

Research activities in 2024

- Milestone
 - Submission to the Euclid Consortium Editorial Board of KP-GC-7 Paper 11 (Euclid Collaboration: Turin et al.) [see later]

Research activities in 2024

Milestone

• Submission to the Euclid Consortium Ec Collaboration: Turin et al.) [see later]

• Other deliverables

- 1. Euclid Collaboration: Tanidis et al. A&A, 683, A17 (2024)
- 2. Euclid Collaboration: Jelic-Cizmek et al. A&A, 685, A167 (2024)
- 3. Submission of Euclid Collaboration: Koyama et al. arXiv:2409.03524
- 4. Submission of Euclid Collaboration: Lesgourgues et al. arXiv:2406.18274
- 5. Submission of Euclid Collaboration: Archidiacono et al. arXiv:2405.06047 [see later]
- 6. Submission of Euclid Collaboration: Mellier et al. arXiv:2405.13491
- 7. Development of new technique to detect relativistic effects in power spectrum [see later]

Submission to the Euclid Consortium Editorial Board of KP-GC-7 Paper 11 (Euclid

Euclid preparation

TBD. Harmonic-space measurements of clustering, growth, and magnification with *Euclid*'s spectroscopic and photometric galaxy samples

Euclid Collaboration: S. Camera,^{1,2,3}* K. Tanidis,^{4,5} B.R. Granett,⁶ I. Tutusaus,⁷ N. Dalmasso,¹

Euclid preparation

TBD. Harmonic-space measurements of clustering, growth, and magnification with *Euclid*'s spectroscopic and photometric galaxy samples

Euclid Collaboration: S. Camera,^{1,2,3}* K. Tanidis,^{4,5} B.R. Granett,⁶ I. Tutusaus,⁷ N. Dalmasso,¹

• Observed fluctuation in galaxy number counts

Euclid preparation

TBD. Harmonic-space measurements of clustering, growth, and magnification with *Euclid's* spectroscopic and photometric galaxy samples

Euclid Collaboration: S. Camera,^{1,2,3}* K. Tanidis,^{4,5} B.R. Granett,⁶ I. Tutusaus,⁷ N. Dalmasso,¹

Observed fluctuation in galaxy number counts

• Template fitting

 $P_{\Delta\Delta}(k,\mu;\bar{z}) \simeq \left[b(\bar{z}) + f(\bar{z})\,\mu^2\right]^2 \,D^2(\bar{z})\,P_{\rm lin}(k)$

Euclid preparation

TBD. Harmonic-space measurements of clustering, growth, and magnification with *Euclid's* spectroscopic and photometric galaxy samples

Euclid Collaboration: S. Camera,^{1,2,3}* K. Tanidis,^{4,5} B.R. Granett,⁶ I. Tutusaus,⁷ N. Dalmasso,¹

Observed fluctuation in galaxy number counts

• Template fitting

 $S^{\rm RSD\,RSD}_{ij,\ell}$ $S^{\mathrm{den}\,\mathrm{den}}_{ij,\ell}$

3S)]

Other deliverables no. 2 Euclid preparation

Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{®*1,2}, J. Lesgourgues^{®†3}, S. Casas^{®3}, S. Pamak^{®3}, N. Schöneberg^{®4}, Z. Sakr^{®5,6,7}, G. Parimbelli^{®8,9,10}, A. Schneider^{®11}, F. Hervas Peters^{12,11} F. Pace^{®13,14,15},

Other deliverables no. 2 **Euclid** preparation

Sensitivity to neutrino parameters

Other deliverables no. 2 Euclid preparation

Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{*1,2}, J. Lesgourgues^{†3}, S. Casas³, S. Pamak³, N. Schöneberg⁴, Z. Sakr^{5,6,7}, G. Parimbelli^{8,9,10}, A. Schneider¹¹, F. Hervas Peters^{12,11}, F. Pace^{13,14,15},

$\Lambda ext{CDM} + \sum m_{m{ u}} + \Delta N_{ ext{eff}}$							
	$\Omega_{\mathrm{m,0}}$	$100\Omega_{ m b,0}$	h	$n_{ m s}$	σ_8	$\sum m_{\nu} [\text{meV}]$	$\Delta N_{ m eff}$
Euclid-only							
$\rm WL+GC_{ph}+XC_{ph}+GC_{sp}$	0.0026	0.19	0.023	0.012	0.0039	< 220	< 0.746
$Euclid{+}\mathrm{CMB}$							
Euclid + Planck	0.0022	0.037	0.0028	0.0021	0.0031	25	< 0.144
Euclid + CMB-S4 + LiteBIRD	0.0019	0.025	0.0018	0.0016	0.0025	16	< 0.063

uclid-INFN@TO Activity Report 2024 11 · IX ·

• Development of new technique to detect relativistic effects in power spectrum

• Development of new technique to detect relativistic effects in power spectrum

Auto- and ross-correlation measurements $<\delta_X(\vec{k})\delta_Y(\vec{k'}) > \propto \delta^D(\vec{k} + P_{XY})$ $= \left[(b_X + f\mu^2)(b_Y + i\frac{\mathcal{H}f\mu}{k} (\alpha_X(b_Y + f\mu^2))) \right]$

• $X = Y \rightarrow$ auto-correlation

• $X \neq Y \rightarrow$ cross-correlation

$$+ \overrightarrow{k'} P_{XY}(k)$$

$$_{Y}(z,k,\mu) =$$

$$_{Y}(z,k,\mu) + \left(\frac{\mathcal{H}f\mu}{k}\right)^{2} \alpha_{X}\alpha_{Y}$$

$$\mu^{2}) - \alpha_{Y}(b_{X} + f\mu^{2}) \right) P_{m}(k)$$

	[Courtesy of F. Montano]
--	--------------------------

• Development of new technique to detect relativistic effects in power spectrum total

bright faint

Plan for 2025

- Work on DR1 KPs

• Coordination of the Joint Cosmology KP no. 2 (cosmology with photometric observables)

