L'ATTUALITÀ DELLA TEORIA DI FERMI A 90 anni dalla Teoria di Fermi del Decadimento Beta

Guido Martinelli INFN Sezione di Roma Sapienza Università di Roma

DIPARTIMENTO DI FISICA

Pisa 10 Ottobre 2024

Alcune Considerazioni di Carattere Generale:

Enrico Fermi, Tentativo di una teoria dell'emissione dei raggi "beta" (in Italian), Ric. Sci. 4, 491 (1933)

A 91 anni dalla Teoria di Fermi del Decadimento Beta

Enrico Fermi, Tentativo di una teoria dei raggi β (in Italian), Nuovo Cim. 11, 1 (1934)
Enrico Fermi, Versuch einer Theorie der β-Strahlen. I (in German), Z. Phys. 88, 161 (1934)

questo non è un seminario di Storia della Fisica

La Teoria di Fermi è un tentativo, molto ben riuscito e dopo 90 anni tuttora attuale, di descrivere in maniera quantitativa le disintegrazioni (i decadimenti) beta dei nuclei, includendo il neutrino ipotizzato da Pauli. In una notazione moderna

$$(A, Z) \to (A, Z+1) + e^- + \nu$$

Ovvero nel nucleo iniziale un neutrone si trasforma in protone con l'emissione (creazione) simultanea di un elettrone e un neutrino

$${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + e^- + \bar{\nu}_e$$

Il Contesto Storico

Ho usato il materiale da R. Barbieri Il Nuovo Saggiatore Vol. 39 N. 3-4 (2023) *F. Vissani* arXiv:2310.07834v1 [physics.hist-ph]

- 1920 Esistono solo protoni e elettroni. Atomi e Nuclei sono stati composti di questi costituenti elementari;
- Problemi con lo spin dei nuclei e con l'energia di legame nucleare;

Composizione del Nucleo di Azoto e Relativa Statistica

model	year	$^{14}\mathrm{N}$	statistics
pe	1920	$7 \times (2p,e)$	fermion
$pe\nu$	1930	$7 \times (2p, e, \nu)$	boson
pn	1932	$7 \times (p,n)$	boson

Table 2: Particle content of the ¹⁴N nucleus for different nuclear models and their prediction for the statistics. Its spin was measured and known to be integer, implying boson statistics.

Il Contesto Storico

- "Seconda quantizzazione": valida per i fotoni (niente carica e massa nulla) mentre si pensa che protoni e elettroni sono ``conservati", dunque le particelle emesse in una disintegrazione devono già esistere nel nucleo originale;

Il Contesto Storico

- 1930 Pauli propone l'esistenza del neutrino (chiamato inizialmente neutrone) per spiegare lo spettro dell'elettrone nel decadimento beta;
- 1932 Scoperta del neutrone da parte di J. Chadwick (e anche misura della massa molto vicina a quella del protone). Questo eslude che sia il neutrino;
- 1932 Scoperta del positrone da parte di C.D. Anderson;
- 1934 F. Joliot e I. Curie osservano decadimenti beta con emissione di positroni (radioattività artificiale).

CERTO UN PERIODO DENSO DI SVILUPPI FONDAMENTALI!

"Minimal Flavour Deconstruction" in 4d, explicit

B, Isidori, 2023

 $G = SU(3) \times SU(2) \times U(1)_Y^{[3]} \times U(1)_{B-L}^{[12]} \times U(1)_{T_{3R}}^{[2]} \times U(1)_{T_{3R}}^{[1]}$

Scalars

Field	$U(1)_{Y}^{[3]}$	$U(1)_{B-L}^{[12]}$	$U(1)_{T_{3R}}^{[2]}$	$U(1)^{[1]}_{T_{3R}}$	SU(3) imes SU(2)
$H_{u,d}$	-1/2	0	0	0	(1,2)
χ^q	-1/6	1/3	0	0	(1, 1)
χ^l	1/2	-1	0	0	(1, 1)
ϕ	1/2	0	-1/2	0	(1, 1)
σ	0	0	1/2	-1/2	(1, 1)

VectorLike fermions

		$U(1)_{Y}^{[3]}$	$U(1)_{B-L}^{[12]}$	$U(1)_{T_{3R}}^{[2]}$	$U(1)^{[1]}_{T_{3R}}$	$SU(3) \times SU(2)$
light VL $(\alpha = 1, 2)$	U_{α}	1/2	1/3	0	0	(3 , 1)
	D_{lpha}	-1/2	1/3	0	0	(3 , 1)
	E_{α}	-1/2	-1	0	0	(1 , 1)
heavy VL	U_3	0	1/3	1/2	0	$({f 3},{f 1})$
	D_3	0	1/3	-1/2	0	(3 , 1)
	E_3	0	-1	-1/2	0	(1, 1)

(a 16-plet/generation with neutrinos)

$$\begin{array}{ll} \text{Most general} \quad d \leq 4 \end{array} \begin{array}{l} \mathcal{L}_{Y}^{u} &= \underbrace{(y_{3}^{u} \bar{q}_{3} u_{3} H_{u}}_{+} + y_{i\alpha}^{u} \bar{q}_{i} U_{\alpha} H_{u} + y_{\alpha}^{\chi_{u}} \bar{U}_{\alpha} u_{3} \chi^{q} + y_{\alpha 2}^{\phi_{u}} \bar{U}_{\alpha} u_{2} \phi + y_{\alpha 3}^{\phi_{u}} \bar{U}_{R\alpha} U_{L3} \phi \\ &+ \hat{y}_{\alpha 3}^{\phi_{u}} \bar{U}_{L\alpha} U_{R3} \phi + y_{1}^{\sigma_{u}} \bar{U}_{3} u_{1} \sigma + \text{h.c.}) + M_{U_{3}} \bar{U}_{3} U_{3} + M_{U_{\alpha}} \bar{U}_{\alpha} U_{\alpha} \end{array}$$

And similarly for $Y_{d,e}$ with $H_u
ightarrow H_d$

Chi riconosce in questa formula la Teoria di Fermi?

$$H_{Int} = g \left[\tau_- \bar{\psi}_e(x) \psi_\nu(x) + \tau_+ \bar{\psi}_\nu(x) \psi_e(x) \right]$$

- au_{\pm} Sono le matrici di Isospin introdotte da Heisenberg Non era chiaro che protoni e neutroni fossero particelle di Dirac
- **x** Rappresenta le coordinate delle particelle pesanti ovvero il neutrone e il protone (nucleo iniziale o finale)

Le particelle leggere non esistono prima del decadimento nel nucleo ma vengono create come i fotoni, le particelle pesanti sono non-relativistiche e il loro numero è conservato Evoluzione verso una forma più familiare

Generalizzando a tutte le possibili combinazioni di bilineari di Dirac

$$H_F = \frac{G_F}{\sqrt{2}} \sum_i \left[\bar{\psi}_p(x) O_i \psi_n(x) \,\bar{\psi}_e(x) O_i \psi_\nu(x) + h.c. \right]$$
$$O_i = S, P, V, A, T$$

In un linguaggio moderno questa teoria non è rinormalizzabile, contiene una scala di massa fondamentale, la scala di Fermi $v = (G_F \sqrt{2})^{-1/2} \simeq 246 \text{ GeV}$, e la sezione d'urto protone-neutrino cresce con l'energia (M. Fierz).

Due aspetti rivoluzionari: le particelle sono create dal vuoto e non sono preesistenti e questo è il primo esempio di una Teoria Effettiva

Nel frattempo molte scoperte e sviluppi nella fisica delle interazioni deboli, seguendo R. Barbieri

- i) The discovery of parity violation in the β decay of ⁶⁰Co by Chien-Shiung Wu [3] in 1956.
- ii) The identification of the vector component of the hadronic current with the charged component of the SU(2) isospin current (Conserved Vector Current).
- iii) The universality between the β decay and the μ decay.
- iv) The extension by Nicola Cabibbo [4] of the CVC hypothesis to include the current with change of strangeness – by the name given to a number of relatively long-lived particles discovered since 1947 – thus making the hadronic part of the weak current a member of an SU(3) octet.
- v) The Partial Conservation of the Axial-vector Current (PCAC): Unlike the case of isospin SU(2), or of SU(3), no approximate axial symmetry seems present in the hadron spectrum. No parity doublet is observed, *e.g.*, in the nucleons. Yoshiro Nambu [5] pointed out in 1960 that the strong interactions are nevertheless invariant under chiral transformations, but the symmetry is spontaneously broken, with pions or the full octet of pseudo-scalar mesons in the case of SU(3) being the corresponding Nambu-Goldstone bosons.

Effective Hamiltonians for Neutron and Muon Weak decays

$$H_F = -\frac{G_F}{\sqrt{2}} \left(\bar{p}(x) \gamma^{\mu} \left(1 - \frac{g_A}{g_V} \gamma^5 \right) n \right) \left(\bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \right)$$
$$H_F = \frac{-G_F}{\sqrt{2}} \left(\bar{\nu}_{\mu} \gamma^{\mu} (1 - \gamma_5) \mu \right) \left(\bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \right)$$

CKM matrix elements, Strong interactions effects and Radiative Corrections neglected

Which are the limits of validity of the Fermi theory?

PRESENT: the Standard Model and beyond Vacuum Energy Hierarchy Vacuum Stability

$$\mathcal{L} = \Lambda^{4} + \Lambda^{2} H^{2} + \lambda H^{4} + Higgs \operatorname{meson 2012}$$

$$D_{\mu}H)^{2} + \bar{\psi} D \psi + F_{\mu\nu}^{2} + F_{\mu\nu} \tilde{F}_{\mu\nu} \operatorname{Strong} \mathcal{P}$$

$$\mathcal{L} = \Lambda^{4} + \Lambda^{2} H^{2} + \lambda H^{4} + H^{4} +$$

Flavor puzzle

New Physics Possible breaking of accidental symmetries

The Weirdness of the Standard Model

- Three families $3m^{W} + (2 + 1)\delta P^{MNS} + 3\delta P^{MNS} = 9$ "who ordered that ?" I. Rabi
- Fundamental breaking of Parity

"space cannot be asymmetric!" L. Landau

Predictivity: 3 gauge couplings + 16 higgs couplings (+ 7 higgs-neutrino) !
 + the coupling θ of strong CP violation

"has too many arbitrary features for [its] predictions to be taken very seriously" S. Weinberg '67

 $3g_i + (\lambda, M_H) + 6m_q + 3m_\ell + \delta + 3\theta_{CKM} + \theta_{QCD} = 19$

Quark Masses from Lattice QCD

Input	Lattice/Exp
$m_u^{\overline{ m MS}}(2{ m GeV})$	$2.20(9)\mathrm{MeV}$
$m_d^{\overline{ m MS}}(2{ m GeV})$	$4.69(2)\mathrm{MeV}$
$m_{s}^{ m MS}(2{ m GeV})$	$93.14(58)\mathrm{MeV}$
$m_c^{ m MS}(3{ m GeV})$	$993(4)\mathrm{MeV}$
$m_c^{\overline{ ext{MS}}}(m_c^{\overline{ ext{MS}}})$	1277(5) MeV
$\m_b^{MS}(m_b^{MS})$	4196(19) MeV
$m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$ (GeV) to be updated	163.44(43)

Table 3 Full lattice inputs. The values of the different quantities have been obtained by taking the weighted average of the $N_f = 2 + 1$ and $N_f = 2 + 1 + 1$ FLAG numbers.

Hints of NP structure: Flavor symmetries of the SM

• Standard Model (SM) gauge sector is i flavor blind and CP conserving

 $Y_{ij}\bar{\Psi}^i_L H\Psi^j_R$

 $\mathcal{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

Turn on Yukawas

they look all the same

don't think so $m_1 < m_2 < m_3$

The Higgs introduces the only known non-gauge couplings

 $\mathscr{G}_F(\mathrm{SM}) = U(1)_B \times U(1)_I$

Higgs couplings are not flavor blind courtesy of B.A. Stefanek q_i q_i

electromagnetic neutral currents charged currents

$$\mathcal{L}_{int} = -eA^{\mu}J_{\mu}^{em} - \frac{g_W}{2\cos\theta_W}Z^{\mu}J_{\mu}^Z - \frac{g_W}{2\sqrt{2}}[W^{\mu}(J^W)_{\mu}^{\dagger} + h.c.]$$

$$J^Z_\mu = 2J^3_\mu - 2\sin^2\theta_W J^{em}_\mu$$

$$L_{CC}^{weak\,int} = \frac{g_W}{\sqrt{2}} \left(J_{\mu}^- W_{\mu}^+ + h.c. \right)$$

$$\rightarrow \frac{g_W}{\sqrt{2}} \left(\bar{u}_L \mathbf{V}^{CKM} \gamma_{\mu} d_L W_{\mu}^+ + ... \right)$$

The Effective Hamiltonian, Wilson OPE and QCD Corrections

$$\frac{(-ig_W)^2}{8}\bar{u}\gamma^{\mu}(1-\gamma_5)d\,i\frac{-g_{\mu\nu}+q_{\mu}q_{\nu}/M_W^2}{q^2-M_W^2}\,\bar{e}\gamma^{\nu}(1-\gamma_5)\nu_e$$
$$A\sim \langle p|\bar{u}\gamma^{\mu}(1-\gamma_5)d|n\rangle\,i\frac{-g_{\mu\nu}+q_{\mu}q_{\nu}/M_W^2}{q^2-M_W^2}\,\bar{e}\gamma^{\nu}(1-\gamma_5)\nu_e$$

The Effective Hamiltonian, Wilson OPE and QCD Corrections

GENERAL FRAMEWORK: THE OPE

di= dimension of the operator $Q_i(\mu)$ $C_i(\mu)$ Wilson coefficient: it depends on M_W/μ and $\alpha_W(\mu)$ $Q_i(\mu)$ local operator renormalized at the scale μ

¥δm

IV

V

VI

Very recently, in an important theoretical development, van Ritbergen and Stuart completed the evaluation of $\mathcal{O}(\alpha^2)$ corrections to τ_{μ} in the local V-A theory, in the limit $m_e^2/m_{\mu}^2 \to 0$ [7,8]. Their final answer can be expressed succinctly as

$$C(m_{\mu}) = \frac{\alpha(m_{\mu})}{\pi}c_1 + \left(\frac{\alpha(m_{\mu})}{\pi}\right)^2 c_2, \qquad (1)$$

$$c_1 = \frac{1}{2} \left(\frac{25}{4} - \pi^2 \right); \qquad c_2 = 6.700.$$
 (2)

In Eq. (1), $\alpha(m_{\mu})c_1/\pi$ is the one-loop result [1] and $\alpha(m_{\mu})$ is a running coupling defined by

$$\alpha(m_{\mu}) = \frac{\alpha}{1 - \left(\frac{2\alpha}{3\pi} + \frac{\alpha^2}{2\pi^2}\right) \ln \frac{m_{\mu}}{m_e}}.$$
(3)

$$\Gamma = \frac{G_F^2 m_{\mu}^5}{192\pi^3} [1 + C(m_{\mu})] f(\rho^2) + O(\frac{m_{\mu}^2}{M_W^2})$$
$$f(z) = 1 - 8z - 12z^2 \log z + 8z^3 - z^4$$

L'HAMILTONIANA DI FERMI E` OVUNQUE Classification of the processes in the SM

 $q^2 \ll M_W^2$

Semi-leptonic Decays

these are the better sources to measure the absolute values of the CKM matrix elements |V ij|

other possible semi-leptonic decays are the following $\begin{array}{cccc} \pi^+ & \longrightarrow & \pi^0 + e^+ + \nu_e \\ K^+ & \longrightarrow & \pi^0 + \mu^+ + \nu_\mu \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array}$ $-\frac{G_F}{\sqrt{2}}V_{us}\left(\bar{u}(x)\gamma_{\mu}(1-\gamma_5)s(x)\right)\left(\bar{\mu}(x)\gamma_{\mu}(1-\gamma_5)\nu_{\mu}(x)\right)\right)$ - *u*], 77 K^{-}_{κ} $K^0 \longrightarrow \pi^- + \mu^+ + \nu_\mu$ $\overline{
u}_{\mu}$ \bar{K}^0 $D^0 \longrightarrow K^+ + \mu^+ + \nu_\mu$ K^{-} D^0

Non-leptonic Decays Penguins contractions and all that

TO Æ U Ũ DE \mathcal{K}^{-} ч

Non-leptonic Decays Penguins contractions and all that

π° Æ 0 V.C 77+ To 3 CA ud Ko 110 u C CA

Non-leptonic Decays Penguins contractions and all that

Penguins diagrams H=-GE V_{cs}V^{*}_{cd} E_{Vul1-X5}15JY^N_{c1-X5}1c CP 6 K CP other ops $\Lambda V_{cs} V_{cd}^{*} = \overline{J} Y_{\mu} (1 - J_5) s \overline{c} Y^{\mu} (1 - J_5) c$

All Topologies

Figure 1: Non-penguin diagrams. The dashed line represents the four-fermion operator.

GENERAL FRAMEWORK: THE OPE

$$\begin{aligned} A_{FI} & (2\pi^4) \,\delta^4 \, (p_F - p_I) = \int d^4 x \, d^4 y \, D_{\mu\nu} (x, M_W) \\ & \langle F | T[J_{\mu} (y + x/2) J^{\dagger}_{\nu} (y - x/2)] | I \rangle \\ & \langle F | H^{\Delta S = 1} | I \rangle = \end{aligned}$$

$$G_{\rm F}/\sqrt{2} V_{\rm ud} V_{\rm us}^*$$
 $\Sigma_{\rm i} C_{\rm i}(\mu) < \frac{F | Q_{\rm i}(\mu) | I}{(M_{\rm W})^{\rm di-6}}$

di= dimension of the operator $Q_i(\mu)$

 $C_i(\mu)$ Wilson coefficient: it depends on M_W/μ and $\alpha_W(\mu)$ $Q_i(\mu)$ local operator renormalized at the scale μ

$$H_F = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left[\bar{u} \gamma_\mu (1 - \gamma_5) d \right] \left[\bar{s} \gamma^\mu (1 - \gamma_5) u \right]$$

GENERAL FRAMEWORK

$$H^{\Delta S=1} = G_F / \sqrt{2} V_{ud} V_{us}^* [(1-\tau) \Sigma_{i=1,2} Z_i (Q_i - Q_i^c) + \tau \Sigma_{i=1,10} (Z_i + Y_i) Q_i]$$

Where y_i and z_i are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al. + Ciuchini et al.)

 $\tau = -V_{ts}^* V_{td} / \overline{V_{us}^* V_{ud}}$

We have to compute $A^{I=0,2}_{i} = \langle (\pi \pi)_{I=0,2} | Q_{i} | K \rangle$ with a non perturbative technique (lattice, QCD sum rules, 1/N expansion etc.) New local four-fermion operators are generated

$$Q_{1} = (\bar{s}_{L}^{A} \gamma_{\mu} u_{L}^{B}) (\bar{u}_{L}^{B} \gamma_{\mu} d_{L}^{A})$$
Current-Current
$$Q_{2} = (\bar{s}_{L}^{A} \gamma_{\mu} u_{L}^{A}) (\bar{u}_{L}^{B} \gamma_{\mu} d_{L}^{B})$$

$$Q_{3,5} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{A}) \sum_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{B})$$
Gluon
$$Q_{4,6} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{B}) \sum_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{A})$$
Penguins

$$Q_{7,9} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu} d_{L}^{A})\sum_{q} e_{q} (\bar{q}_{R,L}^{B}\gamma_{\mu} q_{R,L}^{B}) \text{ Electroweak}$$
$$Q_{8,10} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu} d_{L}^{B})\sum_{q} e_{q} (q_{R,L}^{B}\gamma_{\mu} q_{R,L}^{A}) \text{ Penguins}$$

+ Chromomagnetic end electromagnetic operators

$${\cal A}(K
ightarrow \pi \pi) = \sum_i C^i_W(\mu) \langle \pi \pi | O_i(\mu) | K
angle$$

GENERAL FRAMEWORK

$$\langle H^{\Delta S=1} \rangle = G_F / \sqrt{2} V_{ud} V_{us}^* \dots \Sigma_i C_i(a) \langle Q_i(a) \rangle$$

 $M_W = 100 \text{ GeV}$

FERMI EFFECTIVE THEORY

Effective Theory - quark & gluons

$$a^{-1} = 2-5 \text{ GeV}$$

Hadronic non-perturbative region

$$\Lambda_{\text{QCD}}$$
, $M_{\text{K}} = 0.2-0.5$ GeV

THE SCALE PROBLEM: Effective theories prefer low scales, Perturbation Theory prefers large scales

Weak Hamiltonian for $K \rightarrow \pi \pi$

Weak Hamiltonian is given by local four-quark operator Courtesy by Xu Feng

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}, \quad \tau = -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$

•
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = 1.543 + 0.635i$$

- $z_i(\mu)$ and $y_i(\mu)$ are perturbative Wilson coefficients
- Q_i are local four-quark operator

Anche i Diagrammi a Pinguino generano l'Hamiltoniana di Fermi

$$A \sim C(q^2) \left(-g_{\mu\nu}q^2 + q_{\mu}q_{\nu}\right) \bar{s}\gamma_{\mu}(1-\gamma_5)d$$

$$i\frac{-g_{\mu\nu} + (1-\alpha)q_{\mu}q_{\nu}/q^2}{q^2} \bar{q}\gamma_{\nu}q$$

$$= iC(q^2) \left[\bar{s}\gamma_{\mu}(1-\gamma_5)d\right] \left[\bar{q}\gamma_{\mu}q\right]$$

$$Questo si può generalizzare a tutti gli ordini nelle$$

interazioni forti e elettromagnetiche

New local four-fermion operators are generated

$$Q_{1} = (\bar{s}_{L}^{A} \gamma_{\mu} u_{L}^{B}) (\bar{u}_{L}^{B} \gamma_{\mu} d_{L}^{A})$$
Current-Current
$$Q_{2} = (\bar{s}_{L}^{A} \gamma_{\mu} u_{L}^{A}) (\bar{u}_{L}^{B} \gamma_{\mu} d_{L}^{B})$$

$$Q_{3,5} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{A}) \sum_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{B})$$
Gluon
$$Q_{4,6} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{B}) \sum_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{A})$$
Penguins

$$Q_{7,9} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu} d_{L}^{A})\sum_{q} e_{q} (\bar{q}_{R,L}^{B}\gamma_{\mu} q_{R,L}^{B}) \text{ Electroweak}$$
$$Q_{8,10} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu} d_{L}^{B})\sum_{q} e_{q} (q_{R,L}^{B}\gamma_{\mu} q_{R,L}^{A}) \text{ Penguins}$$

+ Chromomagnetic end electromagnetic operators

$${\cal A}(K
ightarrow \pi \pi) = \sum_i C^i_W(\mu) \langle \pi \pi | O_i(\mu) | K
angle$$

Rare Penguin Radiative Decays

The main issue in this Group Meeting will be represented by $b \rightarrow s$ quark transitions: the best example is offered by the neutral-current semileptonic $B \rightarrow K(*)$ |+ |- transitions!

Many interesting properties:

- 1. Loop-level processes (FCNCs are forbidden at tree level in the Standard Model)
- 2. CKM-suppressed decays, where

$$J^{\mu}_{\text{charged}} = \bar{u}^{i}_{L} V^{ij}_{CKM} \gamma^{\mu} d^{j}_{L} + \bar{\nu}^{i}_{L} \gamma^{\mu} \ell^{i}_{L}$$

L. Vittorio (LAPTh & CNRS, Annecy)

$$B^+ \to K^{(*)+}\gamma \qquad B^+ \to K^{(*)+}\mu^+\mu^-$$

since different neutrinos have a mass and they can mix, $\mu \rightarrow e\gamma$ is a possible decay which satisfies all the symmetry constraints

note that the photon is emitted by the W boson, analogy radiative B decays

FLAVOR CHANGING NEUTRAL CURRENTS FCNC

Figura 4: quark process

BOXES Mixing of Neutral Mesons $K^0 \leftrightarrow \bar{K}^0$ $D^0 \leftrightarrow \bar{D}^0$ $B^0 \leftrightarrow \bar{B}^0$ in the case of kaons also charm and up quarks contribute for D and K meson mixing there are important long distance contributions

$$\mathcal{H}_{\text{eff}}^{\Delta B=2} = \frac{G_{\text{F}}^2}{16\pi^2} M_W^2 \left(V_{tb}^* V_{tq} \right)^2 \eta_B S_0(x_t) \times \left[\alpha_s^{(5)}(\mu_b) \right]^{-6/23} \left[1 + \frac{\alpha_s^{(5)}(\mu_b)}{4\pi} J_5 \right] Q^q (\Delta B = 2) + h.c.$$
QCD corrections

PENGUINS AND BOXES

Pure leptonic Bs decays

$$Br(B_s \to l^+ l^-) = \tau(B_s) \frac{G_{\rm F}^2}{\pi} \left(\frac{\alpha}{4\pi \sin^2 \Theta_{\rm W}}\right)^2 \overline{F_{B_s}^2} m_l^2 m_{B_s} \sqrt{1 - 4\frac{m_l^2}{m_{B_s}^2}} |V_{tb}^* V_{ts}|^2 Y^2(x_t)$$

G. Buchalla and A.J. Buras, Nucl. Phys. B 400 (1993) 225.

Many interesting properties:

- 1. Helicity suppressed
- 2. Non-perturbative hadronic contributions enter via Bs decay constant

valskyi's seminar @ CERN (26/7/22)

Lowest order diagrams QCD corrections at NLO or NNLO

8

In the latter case the Squark Mass Matrix is not diagonal

 $(m_Q^2)_{ij} = m_{average}^2 \mathbf{1}_{ij} + \Delta m_{ij}^2 \quad \delta_{ij} = \Delta m_{ij}^2 / m_{average}^2$

Hamiltoniana di Fermi

$$H_F = \frac{-G_F}{\sqrt{2}} \left(\bar{\nu}_\mu \gamma^\mu (1 - \gamma_5) \mu \right) \left(\bar{e} \gamma_\mu (1 - \gamma_5) \ \nu_e \right)$$
$$H_F = -\frac{G_F}{\sqrt{2}} J^\mu J^\dagger_\mu$$

- 1) Seconda quantizzazione per tutte le particelle elementari
- 2) Primo esempio di teoria effettiva di cui facciamo oggi larghissimo uso nella ricerca di nuova fisica
- 3) Come prodotto di correnti ha indicato la strada per la costruzione del Modello Standard (SM)
- 4) Strumento ancora oggi essenziale per la ricerca di fenomeni/segnali di fisica oltre lo SM

BACKUP SLIDES

 $A_2 = \sum_i C_i(\mu) \langle (\pi \pi) IQ_i(\mu) IK \rangle_{I=2}$

$$\begin{split} \Omega_{\rm IB} &= 0.25 \pm 0.08 \; (\text{Munich from Buras \& Gerard}) \\ &= 0.25 \pm 0.15 \; (\text{Rome Group}) \quad 0.16 \pm 0.03 \; (\text{Ecker et al.}) \\ &= 0.10 \pm 0.20 \; \text{Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.} \end{split}$$

Where $Q_i(a)$ is the bare lattice operator And a the lattice spacing.

The effective Hamiltonian can then be read as: $\langle F | H^{\Delta S=1} | I \rangle = G_F / \sqrt{2V_{ud}V_{us}}^* \Sigma_i C_i (1/a) \langle F | Q_i (a) | I \rangle$

In practice the renormalization scale (or 1/a) are the scales which separate short and long distance dynamics