

14th International Spring Seminar on Nuclear Physics 23rd May 2025

Approaching ¹⁰⁰Sn: Structural evolution in ^{98,100}Cd via lifetime measurements

Marta Polettini*, Guangxin Zhang⁺, Daniele Mengoni – University and INFN Padova

Giovanna Benzoni – INFN Milano

Presently at:

*GSI Helmholtzzentrum für Schwerionenforschung *Sun Yat-sen University China

Outline

- **Motivation** •
- The experiment •
- **Results:** •

•

- Beta decay study of ¹⁰¹Cd •
- Lifetime measurements in ^{98,100}Cd, ¹⁰²Sn •

Z=82

¹¹Xe

107

105Sb

^₄Sn

¹⁰³In

101Ag

00Pd

98Ru

¹⁰⁶Te ¹⁰⁷Te

108

106Sb

105 Sn

104 In

102 Ag

101Pd

99Ru

99Rh 100Rh

²Cd ¹⁰³Cd

109

¹⁰⁷Sb

¹⁰⁶Sn

¹⁰⁵In

104Cd

⁰⁸Te ¹⁰⁹Te

108Sb

107 Sn

106 In

105 CC

104 Ac

103 Pd

¹⁰¹Ru

101Rh 102Rh

¹⁰⁰Ru

106

⁴Sb

102**In**

DA 00

99 Pd

98Rh

97 Ru

⁹³Ru

²Ru

⁹⁴Ru

⁹⁵Ru ⁹⁶Ru

HISPEC-DESPEC at GSI-FAIR

Spectroscopic studies both **in-beam** (HISPEC) and with **stopped ions** (DESPEC).

Strength of HISPEC/DESPEC:

- Complete spectroscopy with yields as low as one ion per hour (~nb)
- Sensitive to nuclear lifetimes spanning 13 orders of magnitude (10 ps 100s)

Key goals exploiting unique GSI-FAIR beams:

- Approach the r-process path along N=126: nucleosynthesis of heavy nuclei
- Nuclear structure of exotic nuclei (also around ¹⁰⁰Sn)

The ¹⁰⁰Sn region

¹⁰⁰Sn is the heaviest self-conjugate and doubly magic nucleus (N=Z=50)

excellent probe to proton-neutron correlations

- coupling of **sp states** with respect to a doubly-magic core
 - N=50 $vd_{5/2}g_{7/2}s_{1/2}d_{3/2}h_{11/2}$ $vg_{9/2}p_{1/2}$ 100**Sn** ¹⁰²Sn ⁹⁹Sn ¹⁰¹Sn Z=50 ¹⁰⁰In ¹⁰¹In ⁹⁷In ⁹⁸in ⁹⁹In $\pi g_{9/2} p_{1/2}$ Z=48 ⁹⁶Cd ⁹⁷Cd ⁹⁸Cd ⁹⁹Cd 100**Cd** ⁹⁵Ag ⁹⁶Ag ⁹⁷Ag ⁹⁸Ag ⁹⁹Ag N=Z ⁹⁵Pd ⁹⁷Pd ⁹⁸Pd ⁹⁴Pd ⁹⁶Pd

•

Isomeric states in the ¹⁰⁰Sn region

Seniority mixing by core excitation in N=50

⁹⁸Cd 6⁺ - J. Park et al., Phys. Rev. C 96, 044311 (2017)

N>50: Sn isotopic chain

- LSSM explained the B(E2 : 0⁺ → 2⁺) trend by activating protons and neutrons from the g9/2 orbital or by polarization mechanism
- Relative proton contribution larger towards ¹⁰⁰Sn
- 4⁺ state influenced interplay of pairing and quadrupole interactions (A. P. Zuker)

 $_{48}$ Cd isotopic chain: enhancement of collectivity induced by two proton holes in $g_{9/2}$ orbits.

The FRS+DESPEC setup

The DESPEC station

A. K. Mistry et al., NIM A 1033 (2022) 166662

- AIDA: 8x8 cm² DSSSD tiles, 16384 pixels
- bPlast: BC-400 plastic detector
- EUROBALL: four 7-fold HPGe clusters
- FATIMA: 36 LaBr₃(Ce) detectors

The DESPEC station

A. K. Mistry et al., NIM A 1033 (2022) 166662

- AIDA: 8x8 cm² DSSSD tiles, 16384 pixels
- bPlast: BC-400 plastic detector
- EUROBALL: four 7-fold HPGe clusters
- FATIMA: 36 LaBr₃(Ce) detectors

¹⁰¹Cd: beta decay study

Fusion-evaporation reaction

¹⁰¹Cd: beta decay study

- Large-Scale Shell Model calculations based on a ⁹⁰Zr core
- A proton in the Og_{9/2} shell is converted into a neutron placed in the Og_{7/2} shell in the daughter nucleus

- Logfts point at allowed β decay
- Previously suggested levels' spin and parity confirmed

Calculations performed by Y. Cenxi, Sun Yat-Sen University, China

M. Polettini et al., EPJ Web Conf. 324 (2025) 00025

⁹⁸Cd: seniority description

⁹⁸Cd

Isotope	$I_i^{\pi} \to I_f^{\pi}$	$B(E2)_{Exp}$	B(E2) _{SM}
⁹⁸ Cd	$8^+ \rightarrow 6^+$	39(4)*	51
	$6^+ \rightarrow 4^+$	110(5)	126
	$4^+ \rightarrow 2^+$	98(50)	179
	$2^+ \rightarrow 0^+$	-	153

		<u>8</u> ⁺	<u>2428</u>
<u>8</u> ⁺	2316	<u>6</u> ⁺	2281
<u>6</u>	2201	4 ⁺	2002
4 ⁺	2008	4	2002

1389

L. Coraggio et al., PRC 105, 034312 (2022), PRC 100, 014316 (2019), PRC 93, 064328 (2016)

- CD Bonn bare interaction, ⁵⁶Ni core
- proton effective charges: 1.2 to 1.6 e.

 \rightarrow the system is well reproduced by including only the proton degree of freedom

Adapted from R. M. Pérez-Vidal et al. Phys. Rev. Lett. 129 (2022) 112501

G. Zhang, M. Polettini et al., Phys. Lett. B 863 (2025) 139378

Marta Polettini

1395

¹⁰⁰Cd: proton core breaking

Isotope	$I_i^{\pi} \to I_f^{\pi}$	B(E2) _{<i>Exp</i>}	SM1	SM2
¹⁰⁰ Cd	$8^+ \to 6^+_2$	60(30)*	0.004	94
	$8^+ \to 6_1^+$	0.42(5)*	57	2
	$6^+_1 \rightarrow 4^+$	290(30)	170	107
	$4^+ \rightarrow 2^+$	71(40)	267	575
	$2^+ \rightarrow 0^+$	-	201	476

SM1 CD Bonn, ⁷⁸Ni core (e_n = 0.4-1 e, e_p = 1.2-1.7 e) **SM2** CD Bonn, ⁸⁸Sr core (e_n = 0.8-1 e, e_p = 1.6-1.8 e) + proton excitations from the $2p_{1/2}$ orbital

B(E2; $4^+ \rightarrow 2^+$) not well accounted for \rightarrow some degree of freedom still missing?

Calculations performed by:	<u>0</u> ⁺ 0	0^+ 0 0^+ 0
A. Gargano, G. De Gregorio, INFN Napoli	SM1	SM2 EXP
	G. Zhang, M. Polettini et al., Phys.	Lett. B 863 (2025) 139378
23 rd May 2025	Marta Polettini	14

¹⁰⁰Cd

			<u>8</u> +	<u>2548</u>
6^+	2253	Q ⁺ 2102	6 ⁺	2458
• •	1007	6 ⁺ 2193	<u>6</u> +	2095
<u>8</u>	1907	$\frac{6^+}{4^+}$ <u>1918</u>	4 +	1700
0 4 ⁺	1607	4 1733	T	1133

¹⁰⁰Cd: proton and neutron core breaking

Isotope	$I_i^{\pi} \to I_f^{\pi}$	B(E2) _{<i>Exp</i>}	SM1	SM2	SM3
	$8^+ \to 6^+_2$	60(30)*	0.004	94	58
	$8^+ \to 6^+_1$	0.42(5)*	57	2	0.06
¹⁰⁰ Cd	$6^+_1 \rightarrow 4^+$	290(30)	170	107	283
	$4^+ \rightarrow 2^+$	71(40)	267	575	574
	$2^+ \rightarrow 0^+$	-	201	476	391

SM3 ⁸⁰Zr core and including $\pi v (0g1d2s)$ interaction

- π core breaking previously revealed essential to describe the physics in the region (⁹⁸Cd,¹⁰⁴Sn)
- $\pi(v)$ shell gap size: varied of +/- 1 MeV
- terms of p-p and n-n interactions have been excluded

\rightarrow Missing ingredients in the present form of the πv interaction?

Calculations performed by:		<u>0</u> ⁺	Q	0+	Q
A. Gargano, G. De Gregorio, INFN Napoli		SM3		EXP	
F. Nowacki, IPHC Strasbourg	G. Zhang, M. Polettini et al.,	Phys. Lett.	B 863	(2025) 13	<u>39378</u>
23 rd May 2025	Marta Polettini			15	

¹⁰⁰Cd

		2 ⁺	1004
2 ⁺	900		

¹⁰²Sn: lifetime of the 4⁺ state

Lifetime of the 4⁺ state measured for the first time

\rightarrow Letter in preparation

Fatima Energy (keV)

4000 500 Fat T- SCI41 (ns)

Conclusions

- Successful S496 run has been made by the local GSI group as well as a large remote group of participants during Covid-19 time
- Data analysis allowed to extract for the first time lifetime results by fast-timing measurement 6⁺ and 4⁺ states in ^{98,100}Cd
- Assessment of **core breaking and relevance of proton-neutron interaction**, especially for the 4⁺ state in ¹⁰⁰Cd.

Additional points:

- Study of low-lying states in ¹⁰¹Cd via β -delayed spectroscopy
- ¹⁰²Sn 4+ lifetime being finalised
- Study of ¹⁰³Sn via α decay of ¹⁰⁷Te will be performed

The DESPEC collaboration for the S496 experiment

G. Zhang^{a,b}, **M. Polettini**^{a,b}, **D. Mengoni**^{a,b}, **G. Benzoni**^c, Z. Huang^{a,b}, M. Gorska^d, A. Blazhev^e, L. M. Fraile^f, A. Gargano^g, G. de Gregorio^g, F. Nowacki^h, H. M. Albers^d, A. Algoraⁱ, S. Alhomaidhi^j, C. Appleton^k, T. Arıcı^d, M. Armstrong^e, A. Astier^l, A. Banerjee^d, D. Bazzacco^{a,b}, S. Bottoni^c, P. Boutachkov^d, A.Bracco^c, A. Bruce^m, D. Brugnara^{a,b}, F.Camera^c, B. Cederwallⁿ, M. Cicerchia^o, A. Corsi^p, M. L. Cortes^o, F.C.L. Crespi^c, T. Davidson^k, G. de Angelis^o, T. Dickel^d, A. Esmaylzadeh^e, F. Galtarossa^{a,b}, E. R. Gamba^c, J. Gerl^d, A. Goasduff^o, A. Gottardo^o, A. Gozzelino^o, T. Grahn^q, J. Ha^{a,b}, E. Haettner^d, O. Hall^k, L. Harkness-Brennan^r, H. Heggen^d, N. Hubbardⁱ, A. Illana^q, P.R. John^j, J. Jolie^e, I. Kojouharov^d, N. Kurz^d, M. Labiche^s, S. M. Lenzi^{a,b}, S. Leoni^c, R. Lozeva^l, G. Mantovani^o, T. Marchi^o, H. Mayr^j, M. Mazzocco^{a,b}, R. Menegazzo^{a,b}, B. Million^c, A. K. Mistry^j, E. Nacherⁱ, D. R. Napoli^o, R. Page^r, G. Pasqualato^{a,b}, J. Pellumaj^o, C. M. Petrache^l, R.M. Perez Vidal^o, N. Pietralla^j, Zs. Podolyák^t, A. Raggio^{a,b}, F. Recchia^{a,b}, P. H. Regan^t, J. M. Regis^e, P. Reiter^e, B. Rubioⁱ, M. Rudigier^j, P. Ruotsalainen^q, E. Sahin^j, H. Schaffner^d, Ch. Scheidenberger^d, L. Sexton^k, A. Sharma^d, M. Siciliano^u, J. Simpson^s, F. Soramel^{a,b}, T. Stetz^j, J. J. Valiente-Dobon^o, J.Vesic^v, V. Wernerⁱ, O.Wieland^c, P. Woods^k, A. Yaneva^d, I. Zanon^o, K. K. Zheng^l, R. Zidarovaj

^aUniversita degli Studi di Padova, Padova, 35131, Italy ^bINFN Sezione di Padova, Padova, 35131, Italy ^cINFN Sezione di Milano, Milano, 20133, Italy ^dGSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, 64291, Germany ^eInstitut fur Kernphysik, Universitat zu Koln, Cologne, 50937, Germany ^fGrupo de Fisica Nuclear and IPARCOS, Universidad Complutense de Madrid, Madrid, E-28040, Spain ^gInstituto Nazionale di Fisica Nucleare, Napoli, I-80126, Italy ^hUniversite de Strasbourg, IPHC, Strasbourg, 67037, France ⁱInstituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia, E-46071, Spain ^jInstitut fur Kernphysik, Technische Universitat Darmstadt, Darmstadt, 64289, Germany ^kSchool of Physics and Astronomy, University of Edinburgh, Edinburgh, H9 3FD, UK ^IUniversity Paris-Saclay, IJCLab, CNRS/IN2P3, Orsay, F-91405, France ^mSchool of Computing Engineering and Mathematics, University of Brighton, Brighton, BN2 4AT, UK ⁿDepartment of Physics, KTH Royal Institute of Technology, Stockholm, SE-10691, Sweden ^oINFN Laboratori Nazionali di Legnaro, Legnaro, 35020, Italy ^pCEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette, 91191, France ^qUniversity of Jyvaskyla, Jyvaskyla, 40014, Finland ^rDepartment of Physics, Oliver Ladge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK ^sSTFC Daresbury Laboratory, Daresbury, WA4 4AD, UK ^tDepartment of Physics, University of Surrey, Surrey, GU2 7XH, UK ^uPhysics Division, Argonne National Laboratory, Argonne, IL 60439, USA ^vJozef Stefan Institute, Ljubljana, 1000, Slovenia

Thank you for your attention!

