Shape coexistence in medium-mass nuclei

Dorian Frycz

Mail: dorianfrycz@fqa.ub.edu Universitat de Barcelona & Institut de Ciències del Cosmos

Collaborators: J. Menéndez (UB), A. Rios (UB), A. Poves (UAM), B. Bally (CEA, Paris-Saclay), T. R. Rodríguez (UCM) & A. M. Romero (Fujitsu)

UNIVERSITAT DE BARCELONA

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

May 22, 2024 (Ischia)

1 / 14

Dorian Frycz (UB/ICCUB)

Shape coexistence in medium-mass

Deformation and shape coexistence

Deformation is everywhere:

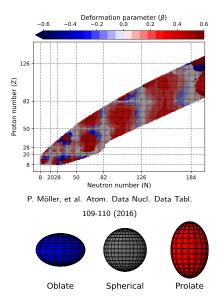
- Magical nuclei are spherical
- Deformation is enhanced mid-shell

Quadrupole deformation:

- Most important shape
- Prolate: elongated sphere
- Oblate: flattened sphere

Shape coexistence:

- Different shapes coexist within the same nucleus at different energies
- Present in most nuclei



Intrinsic vs laboratory frame

Deformation is characterized in the intrinsic frame: (β, γ) However, measurements are done in lab frame: $(B(E2), Q_s)$

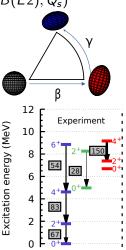
Relation between lab and intrinsic frame:

$$Q_{s}(J) = \frac{3K^{2} - J(J+1)}{(J+1)(2J+3)}Q_{0,s},$$

$$B(E2, J_{i} \to J_{f}) = \frac{5Q_{0,t}^{2}}{16\pi}\langle J_{i}K20|J_{f}K\rangle$$

- ▶ If $Q_{0,s} \simeq Q_{0,t}$: well deformed rotor
- 1. For even-even nuclei (J=0) \rightarrow ${\it Q}_{s}$ = 0
- 2. Triaxial shapes diminish Q_s
- 3. B(E2): scattered across out-band states
- \rightarrow Perfect axial rotor assumption!

Shape invariants $\langle Q^n \rangle$: model independent measure of deformation



Shape invariants: Intermediate-state expansion

Couple Q_2 (tensor) to obtain a scalar:

- $\blacktriangleright \langle Q^2 \rangle = \langle [Q_2 \times Q_2]_0 \rangle \to \beta$
- $\blacktriangleright \langle Q^3 \rangle = \langle [[Q_2 \times Q_2]_2 \times Q_2]_0 \rangle \to \gamma$
- ► All $\langle Q^n \rangle$ up to $\langle Q^6 \rangle$ are needed for fluctuations of (β, γ) K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

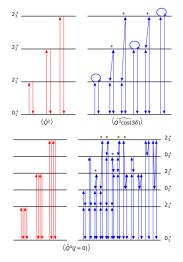
D. Cline, Nuclear Structure 313-326 (1985)

Intermediate-state expansion:

- Expansion in terms of $M_{if} = \langle i ||Q||f \rangle \leftarrow Q_s$ or B(E2)
- Needs all the nuclear states!
- Harder convergence for higher $\langle Q^n \rangle$

$$\langle Q^2
angle_i \sim \sum_t M_{it} M_{ti}$$

 $\langle Q^3
angle_i \sim \sum_{u,t} M_{iu} M_{ut} M_{ti}$

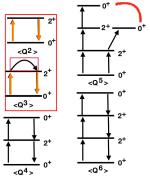


Dorian Frycz (UB/ICCUB)

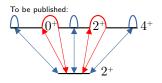
May 22, 2024 (Ischia)

Shape invariants: Sum rule method

- 1). Apply the \hat{Q}_{20} operator to a state: $\hat{Q}_{20}|0^+\rangle = \frac{\text{SR1}(2^+)^{1/2}\overline{|2^+(1)\rangle}}{\rightarrow \langle Q^2 \rangle} = 5\text{SR1}(2^+)$
 - ▶ $\overline{|2^+(1)\rangle}$ not an eigenstate but contains the whole quadrupole strenght
- 2). Evaluate $\langle \langle Q \rangle \rangle = \langle 2^+(1) | Q | 2^+(1) \rangle / \sqrt{5}$ $\rightarrow \langle Q^3 \rangle = \langle Q^2 \rangle \langle \langle Q \rangle \rangle$
- 3). Apply \hat{Q}_{20} a second and third time to obtain $\langle Q^4 \rangle$, $\langle Q^5 \rangle$, and $\langle Q^6 \rangle$
 - **Exact** calculation (up to numeric)
 - Computationally cheap
 - Currently only for J = 0
 - **New!:** extension for any J up to $\langle Q^4 \rangle$



Poves, A., Nowacki, F. & Alhassid, Y. Phys. Rev. C 101, 054307 (2020)

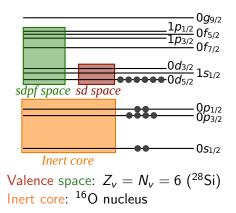


Schrödinger equation

 $| {\cal H} | \Psi
angle = {\it E} | \Psi
angle$

- ► Interacting shell model: H_{eff} = H₀ + H_{res} H_{res}: valence space
- Slater determinant basis {Φ_i}
- Phenomenological interactions:
 USDB and SDPF-NR

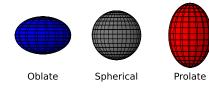
Caurier E., et al. Rev. Mod. Phys. 77, 427 (2005)

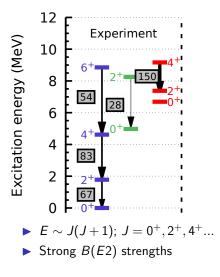


May 22, 2024 (Ischia)

- **Coexistence** of different collective structures:
 - 1. 0_1^+ (0.0 MeV): Oblate bandhead of a rotational band
 - 2. 0⁺₂ (5.0 MeV): Vibration of the ground state
 - 3. 0_3^+ (6.7 MeV): Prolate bandhead of a rotational band
 - 4. Superdeformed rotational band? ($E \gtrsim 10$ MeV)

Taniguchi, Y., et al. Phys. Rev. C 80, 044316 (2009)





Shell model calculation of ²⁸Si

USDB: fails in B(E2) transitions of prolate band

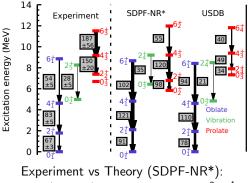
SDPF*: Adjusted SDPF-NR^{\dagger} interaction to reproduce ²⁸Si shell gap

Additional deformation from *pf*-shell particles:

- Slight gain for oblate and vibration
- Significant gain in prolate deformation
- 1 particle in *pf*-shell
 (38% of *sdpf* 2p-2h)

[†]S. Nummela Phys. Rev. C 63,

044316 (2001)



Experiment vs Theory (SDPF-NR*): $B(E2, 2^+_{obl} \rightarrow 0^+_{obl}) = 67 \pm 3 \text{ vs } 91 \ e^2 \text{fm}^4$ $B(E2, 2^+_{vib} \rightarrow 0^+_{vib}) = 28 \pm 5 \text{ vs } 35 \ e^2 \text{fm}^4$ $B(E2, 4^+_{pro} \rightarrow 2^+_{pro}) = 150 \pm 20 \text{ vs } 120 \ e^2 \text{fm}^4$

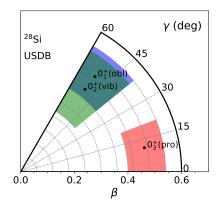
D. Frycz, et al. Phys. Rev. C 110, 054326 (2024)

May 22, 2024 (Ischia)

Shape invariants for ²⁸Si

²⁸Si shape coexistence (USDB):

- Oblate: β = 0.45 ± 0.09 γ = 53 (39 - 60)
- Vibration: β = 0.39 ± 0.13 γ = 53 (39 - 60)
- Prolate: $\beta = 0.47 \pm 0.07$ $\gamma = 11 (0 - 21)$
- Shapes are γ and β soft
- Vibration is **similar** in deformation to oblate GS
- Prolate shape has similar deformation as GS



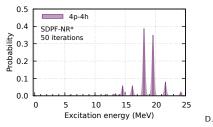
Superdeformation

Superdeformed (SD) band predicted with:

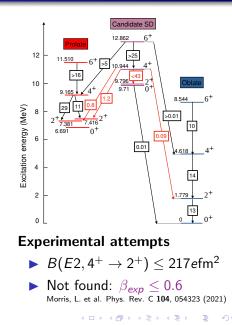
- ▶ Deformation: $\beta_{theo} \approx 1$
 - 4p-4h into pf shell
- $ho \sim 13$ MeV bandhead

Taniguchi, Y., et al. Physical Review C, 2009. 80, 044316

Our prediction lies at 18 MeV:



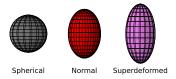
Frycz, et al. Phys. Rev. C 110, 054326 (2024)

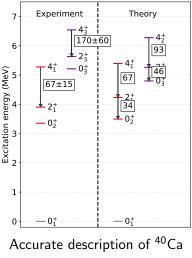


Doubly magical nucleus (Z = N = 20)

Shape coexistence in $^{\rm 40}{\rm Ca:}$

- 1. 0⁺₁ (0.0 MeV): Spherical 0p-0h
- 2. 0⁺₂ (3.4 MeV): Deformed 4p-4h
- 0⁺₃ (5.2 MeV): Superdeformed 8p-8h





E. Caurier, J. Menéndez, F. Nowacki, and A. Poves Phys. Rev. C **75**, 054317 (2007)

Shape invariants for ⁴⁰Ca

⁴⁰Ca shape coexistence (SDPF):

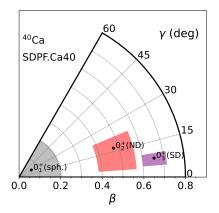
• "Spherical": $\beta = 0.07 \pm 0.14$ $\gamma = -(0-60)$ Compatible with $\beta = 0$ but reaches up to $\beta = 0.2$

Normal deformed:

 $eta=0.47\pm0.09$ $\gamma=17~(4-23)$ Considerable fluctuations

Superdeformed:

 $eta=0.66\pm0.06$ $\gamma=8~(5-10)$ Lower fluctuations for SD

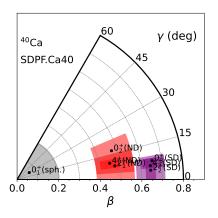


Band evolution in ⁴⁰Ca

Band evolution of (β, γ) :

⁴⁰ Ca	$\beta \pm \Delta \beta$	$\gamma (\Delta \gamma)$
$0_{\rm sph}^+$	$0.07{\pm}0.14$	- (0-60)
$0_{\rm ND}^+$	$0.47{\pm}0.09$	17 (4-23)
2^+_{ND}	$0.47{\pm}0.09$	8 (0-15)
4 ⁺⁻ _{ND}	$0.45{\pm}0.05$	10 (7-12)
0 ⁺ _{SD}	$0.66{\pm}0.06$	8 (5-10)
2_{SD}^{+-}	$0.64{\pm}0.07$	4 (0-9)
4 ⁺⁻ _{SD}	$0.64{\pm}0.02$	6 (0-9)

- Band states overlap
- (β, γ) are consistent
- Robust method to identify states with the same intrinsic shape



э

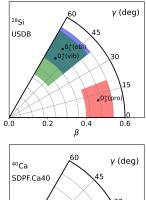
Conclusions

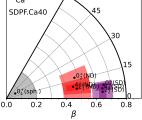
Conclusions:

- Shape coexistence is challenging to describe
- Shape invariants provide a method to identify shapes
- (β, γ) fluctuations are large
- ► Extension of sum rule method for any J (up to ⟨Q⁴⟩)
- Deformation parameters are constant across the band

Outlook:

- Shape invariants for odd nuclei
- ► Study of ^{48±1}Cr
- Octupole shape invariants?





Spectrum of ²⁸Si (USDB)

Oblate rotational band: well described, slightly more deformed

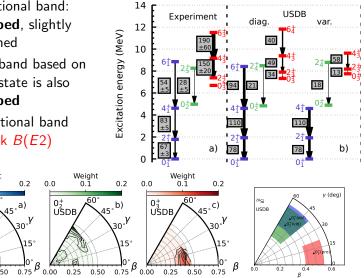
Vibrational band based on the ground state is also well described

Prolate rotational band has too weak B(E2)

Weight

0.1

.60°



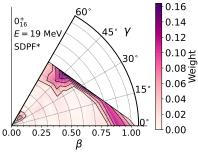
0.00 0.25 0.50

0.0

01 USDB

- ► Full *sdpf* space
- Superdeformed state $(\beta \ge 0.6)$
- ~ 3 particles into the *pf* shell
- ▶ Energy: $E \approx 19$ MeV
- In agreement with the shell model calculation

PGCM calculation in *sdpf* space with SDPF-NR* interaction:



Fixed np-nh configurations

Analytical SU(3) models:

- *sd*-shell ($\beta \leq 0.5$)
- sdpf space ($\beta \ge 0.5$) SD for \ge 4p-4h ($\beta \approx 0.8$)

Spherical

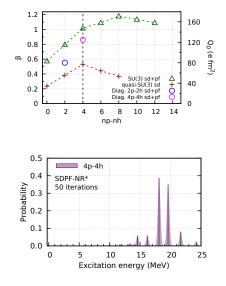
Superdeformed

Lanczos strength function:

Decomposition of a fixed 4p-4h configuration into the fully mixed states of the Hamiltonian:

$$|0^+_{np\text{-}nh}
angle = rac{1}{N}\sum_\sigma S(\sigma)|0^+_\sigma
angle$$

Energies: 4p-4h at 18-20 MeV



Exact diagonalization (ISM)

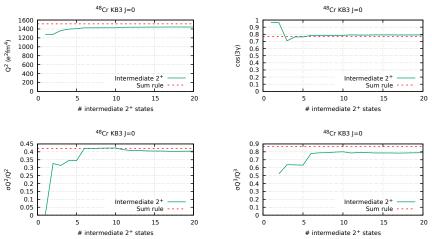
- Most accurate solution of $\mathcal{H}_{eff} |\Psi\rangle = E |\Psi\rangle$
- Large set of simple Slater determinants $|\Phi_i\rangle = c^{\dagger}_{i1}c^{\dagger}_{i2}\dots c^{\dagger}_{iA}|0\rangle$
- Best suited for smaller valence spaces (*sd*)
- Cannot explore a single degree of freedom (Q_{λμ})

Beyond-mean-field (PGCM)

- Approximate solution to ${\cal H}_{\rm eff} |\Psi
 angle = E |\Psi
 angle$
- Smaller set of more complex wavefunctions (HFB) $\beta_k^{\dagger} = \sum_l (U_{lk}c_l^{\dagger} + V_{lk}c_l)$
- Alternative for large valence spaces (*sdpf*)
- Exploration of relevant degrees of freedom (Q_{λμ})

Convergence of $\langle Q^n \rangle$

A word of caution:

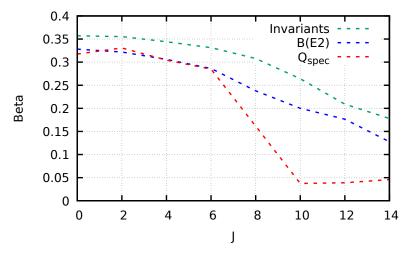


The convergence is worse for more complex nuclei and other J

Dorian Frycz (UB/ICCUB)

May 22, 2024 (Ischia)

Backbending ⁴⁸Cr



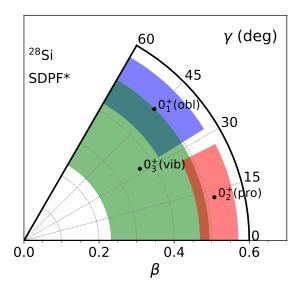
Dorian Frycz (UB/ICCUB)

May 22, 2024 (Ischia)

æ

э

SDPF Si-28 invariants



Dorian Frycz (UB/ICCUB)

May 22, 2024 (Ischia)

< 1 k

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

2

Shape invariants

Dorian Frycz (UB/ICCUB)

æ

(日) (四) (日) (日) (日)