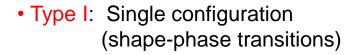
Odd-mass Nb Isotopes as a Region of Intertwined Quantum Phase Transitions

A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel

N. Gavrielov (HU) F. lachello (Yale)

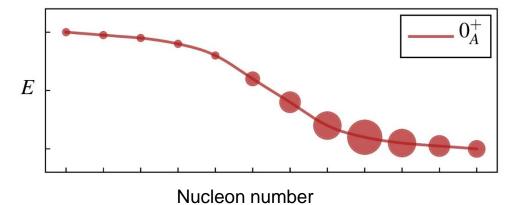
N. Gavrielov, A. Leviatan, F. Iachello, Phys. Rev. C **105**, 014305 (2022) N. Gavrielov, A. Leviatan, F. Iachello, Phys. Rev. C **106**, L051304 (2022) A. Leviatan, N. Gavrielov (2025)

14th International Spring Seminar on Nuclear Physics: "Cutting –edge developments In nuclear structure physics", Ischia, Italy, May 19-23, 2025 Quantum Phase Transitions (QPTs)



$$\hat{H} = (1-\xi)\hat{H}_1 + \xi\hat{H}_2$$

neutron number 90 region: Nd-Sm-Gd

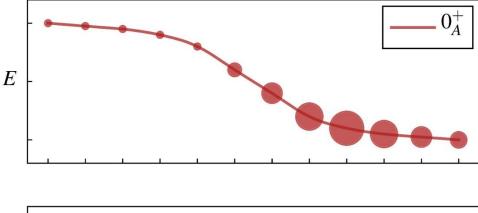


Quantum Phase Transitions (QPTs)

• Type I: Single configuration (shape-phase transitions)

$$\hat{H} = (1 - \xi)\hat{H}_1 + \xi\hat{H}_2$$

neutron number 90 region: Nd-Sm-Gd



• Type II: Two configurations A, B (coexistence normal-intruder states)

$$\hat{H} = \begin{bmatrix} \hat{H}_A(\xi_A) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_B(\xi_B) \end{bmatrix}$$

nuclei near shell-closure: Pb-Hg

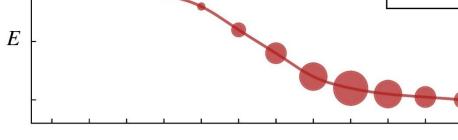


Nucleon number

In most cases, the separate Type I QPTs are masked by the strong mixing between the two configurations • Type I: Single configuration (shape-phase transitions)

$$\hat{H} = (1 - \xi)\hat{H}_1 + \xi\hat{H}_2$$

neutron number 90 region: Nd-Sm-Gd



 0^{+}_{1}

• Type II: Two configurations A, B (coexistence normal-intruder states)

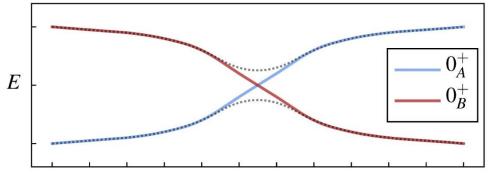
$$\hat{H} = \begin{bmatrix} \hat{H}_A(\xi_A) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_B(\xi_B) \end{bmatrix}$$

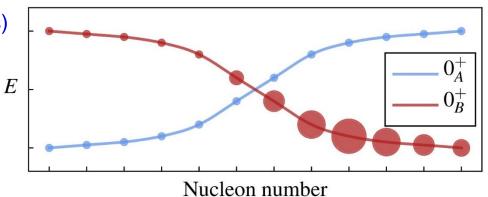
nuclei near shell-closure: Pb-Hg

• Intertwined quantum phase transitions (IQPTs)

Type II QPT and Type I QPT coexist configuration crossing accompanied by pronounced individual shape-evolutions

neutron numbr 60 region: Zr, Nb THIS TALK





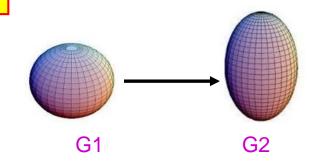
Type I QPT (shape-phase transition)

- IBM: Dynamical symmetries \leftrightarrow phases
- QPT: $H(\xi)$ interpolates between different DS limits

 $H(\xi) = \xi H_{G1} + (1-\xi) H_{G2}$

 $G_i = U(5), SU(3), SO(6) \leftrightarrow phases$ [spherical, deformed: axial, γ -unstable]

Landau potential $\mathsf{E}_{\mathsf{N}}(\beta,\gamma;\boldsymbol{\xi}) = \langle \beta,\gamma;N | \hat{H} | \beta,\gamma;N \rangle$ $|\beta, \gamma; N\rangle = (N!)^{-1/2} (b_c^{\dagger})^N |0\rangle$. $b_c^{\dagger} = \frac{1}{\sqrt{2\beta+1}} [\beta \cos \gamma d_0^{\dagger} + \frac{1}{\sqrt{2}} \beta \sin \gamma (d_2^{\dagger} + d_{-2}^{\dagger}) + s^{\dagger}]$ $\frac{\langle \hat{n}_d \rangle_{0_1^+}}{N} \approx \frac{\beta_{\rm eq}^2}{1 + \beta_{\rm eq}^2}$ Order parameter $\hat{H}(\epsilon_d,\kappa,\chi) = \epsilon_d \,\hat{n}_d + \kappa \,\hat{Q}_{\gamma} \cdot \hat{Q}_{\gamma}$ O(6) $\hat{Q}_{\gamma} = d^{\dagger}s + s^{\dagger}\tilde{d} + \chi(d^{\dagger}\times\tilde{d})^{(2)}$ $E_N(\beta,\gamma;\epsilon_d,\kappa,\chi) = 5\kappa N + \frac{N\beta^2}{1+\beta^2} \left[\epsilon_d + \kappa(\chi^2 - 4)\right] + \frac{N(N-1)\beta^2}{(1+\beta^2)^2} \kappa \left[4 - 4\bar{\chi}\beta\,\Gamma + \bar{\chi}^2\beta^2\right]$ Second-order Deformed transition phase $\bar{\chi} = \sqrt{\frac{2}{7}\chi} \qquad \Gamma = \cos 3\gamma$ First-order transition U(5): 1st order $\kappa = 0$ U(5)-SU(3)U(5) SU(3) **SU(3):** $(\epsilon_d = 0, \chi = -\sqrt{7}/2)$ U(5)-SO6) 2nd order Coexistence region Spherical SO(6): SU(3)-SO(6) $(\epsilon_d = 0, \chi = 0)$ crossover phase



Type II QPT (coexistence near shell closure)

- Multiparticle-multihole intruder excitations across shell gaps
- Interacting boson model with configuration mixing (IBM-CM) [Duval, Barrett, PLB 81]

0p-0h, 2p-2h, 4p-4h,... \rightarrow [N] \oplus [N+2] \oplus [N+4]... normal \oplus intruder states

• Hamiltonian $\hat{H} = \begin{bmatrix} \hat{H}_A(\xi_A) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_B(\xi_B) \end{bmatrix}$

• Wave functions
$$|\Psi; L\rangle = a |\Psi_A; [N], L\rangle + b |\Psi_B; [N+2], L\rangle$$

 \downarrow \downarrow \downarrow \downarrow normal intruder

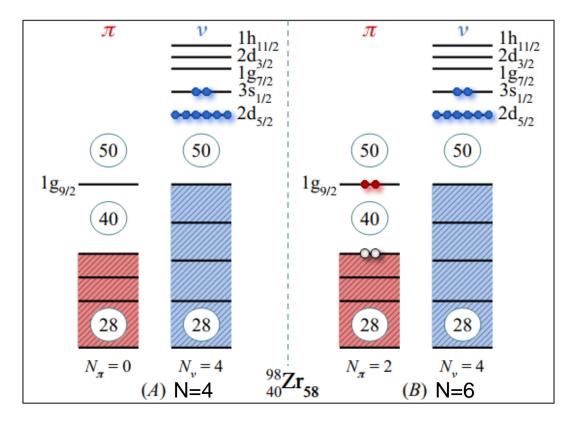
• Geometry $E(\beta,\gamma) = \begin{bmatrix} E_A(\beta,\gamma;\xi_A) & \Omega(\beta,\gamma;\omega) \\ \Omega(\beta,\gamma;\omega) & E_B(\beta,\gamma;\xi_B) \end{bmatrix}$ Matrix coherent states $|\beta,\gamma;N\rangle$, $|\beta,\gamma;N+2\rangle$ $E_{\pm}(\beta,\gamma)$ Eigen-potentials

• Order parameters $\langle \hat{n}_d \rangle_A = \langle \hat{n}_d \rangle_B = \langle \hat{n}_d \rangle_{0_1^+} = a^2 \langle \hat{n}_d \rangle_A + b^2 \langle \hat{n}_d \rangle_B$

IBM-CM in the Zr chain

 $_{40}$ Zr isotopes

Positive parity states



Normal (A) configurationZ=40 subshell closure[N]Intruder (B) configurationtwo-proton excitation (2p-2h states)[N+2]

 $|\Psi;L\rangle = a|\Psi_A;[N],L\rangle + b|\Psi_B;[N+2],L\rangle$

- Interacting boson-fermion model (IBFM)

$$\hat{H}(\xi) = \hat{H}_{\rm b} + \hat{H}_{\rm f} + \hat{V}_{\rm bf}$$

 $\begin{aligned} \hat{H}_{\rm b}(\epsilon_d,\kappa,\chi) &= \epsilon_d \,\hat{n}_d + \kappa \,\hat{Q}_{\chi} \cdot \hat{Q}_{\chi} \\ \hat{H}_{\rm f}(\epsilon_j) &= \epsilon_j \,\hat{n}_j \\ \hat{V}_{\rm bf}(\chi,A,\Gamma,\Lambda) &= A \,\hat{n}_d \,\hat{n}_j + \Gamma \,\hat{Q}_{\chi} \cdot (a_j^{\dagger} \,\tilde{a}_j)^{(2)} + \Lambda \sqrt{2j+1} : [(d^{\dagger} \,\tilde{a}_j)^{(j)} \times (\tilde{d} \,a_j^{\dagger})^{(j)}]^{(0)} : \end{aligned}$

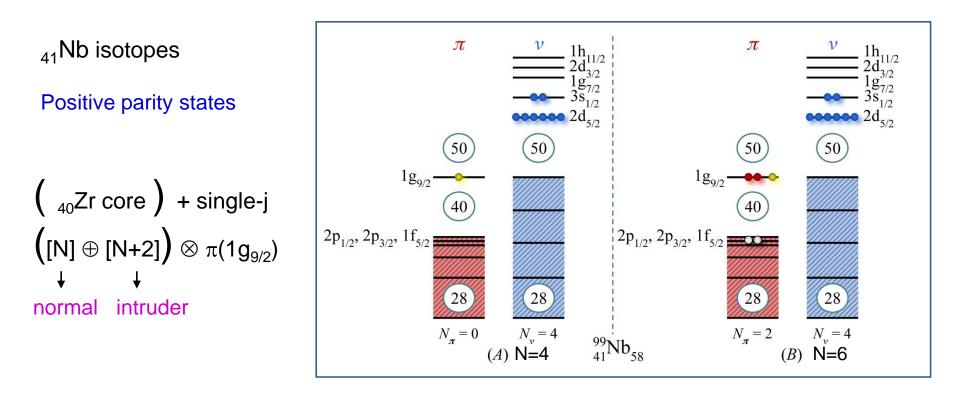
- Interacting boson-fermion model with configuration mixing (IBFM-CM)

$$\hat{H}(\xi_A, \xi_B, \omega) = \begin{bmatrix} \hat{H}_A(\xi_A) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_B(\xi_B) \end{bmatrix}$$

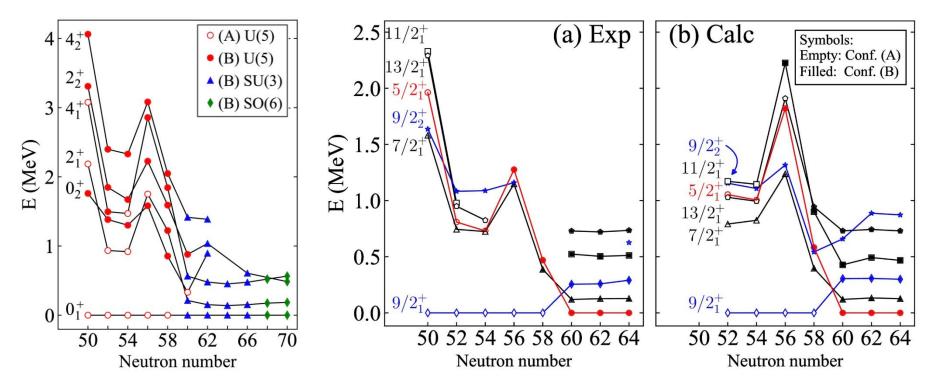
 $\hat{H}_{A}(\xi_{A}) = \hat{H}(\xi_{A})$ $\hat{H}_{B}(\xi_{B}) = \hat{H}(\xi_{B}) + \kappa'_{B} \hat{L} \cdot \hat{L} + \Delta_{B}$ $\hat{W}(\omega) = \omega \left[(d^{\dagger}d^{\dagger})^{(0)} + (s^{\dagger})^{2} + \text{H.c.} \right]$ A (normal) and B (intruder) configurations

Gavrielov, Leviatan, Iachello, PRC 106, L051304 (2022)

IBFM-CM in the Nb chain



Nb



n=50-56: config. (A) spherical (seniority-like) $R^{(A)}_{4/2} \sim 1.6$ config. (B) weakly-deformed $R^{(B)}_{4/2} \sim 2.3$ rise in energy at n=56 due to v(2d5/2) subshell clousure

From n=58: pronounced drop in energy for states of config. (B)

n=60: two configurations exchange role \Rightarrow Type II QPT config. (B) at critical point of U(5)-SU(3) Type I QPT

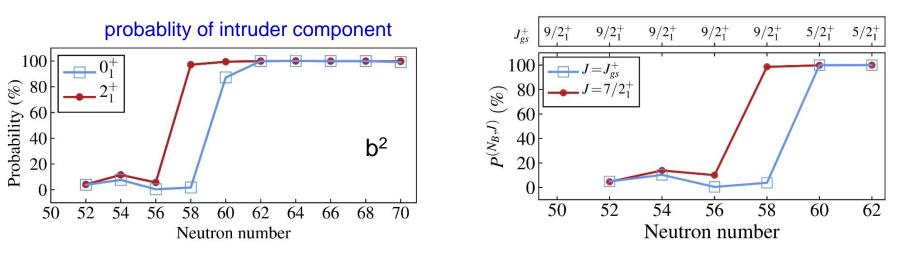
n>60: config. (B) strongly deformed [SU(3)] 104 Zr: R^(B)_{4/2} = 3.24

n=66: g.s. becomes γ -unstable (or triaxial) SU(3) \rightarrow SO(6) crossover

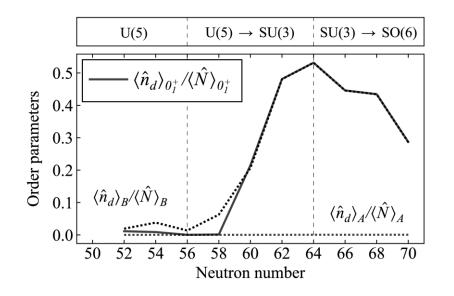
g.s. changes from 9/2+ to 5/2+

K=5/2⁺ band develops J=5/2⁺,7/2⁺, 9/2⁺, 11/2⁺, 13/2⁺ Zr

Nb



- Abrupt crossing of the two configurations (Type II QPT)

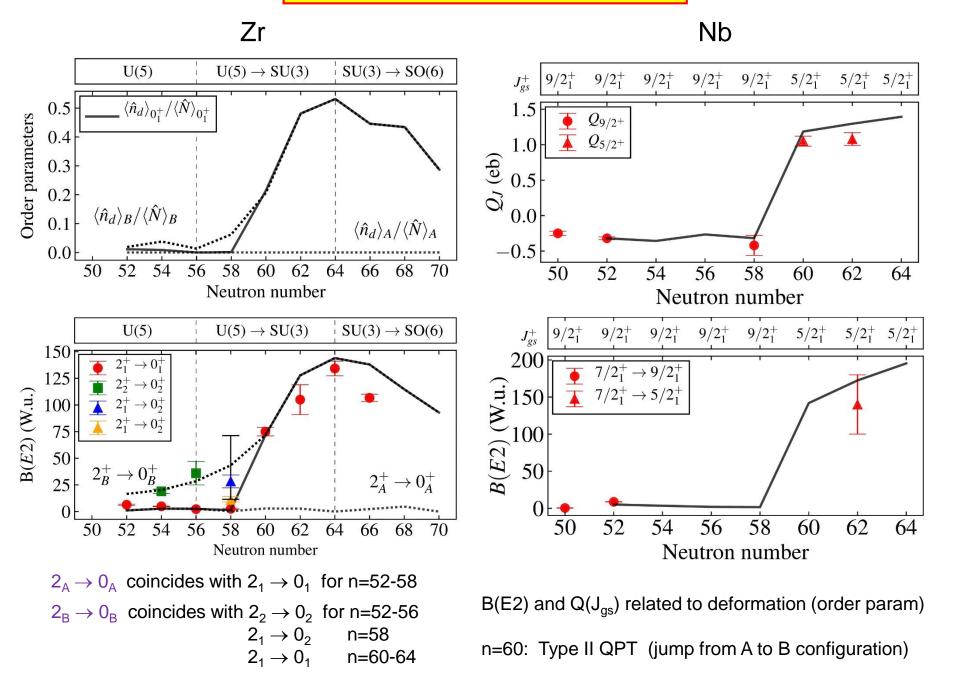


Transition from weak to strong coupling

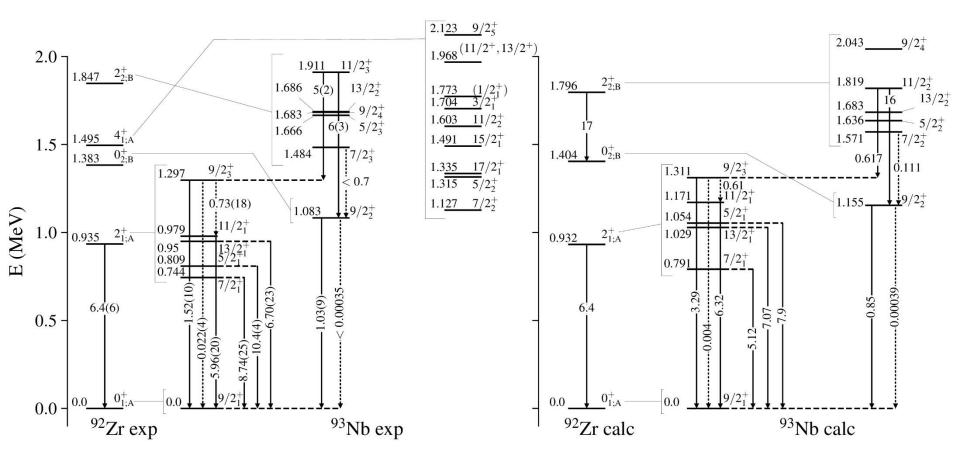
Coexisting Type I QPT and Type II QPT \Rightarrow Intertwined QPTs (IQPTs)

- Gradual spherical to deformed transition (Type I QPT) within the intruder (B) configuration

B(E2) values and quadrupole moments



Type I QPT within the intruder B configuration

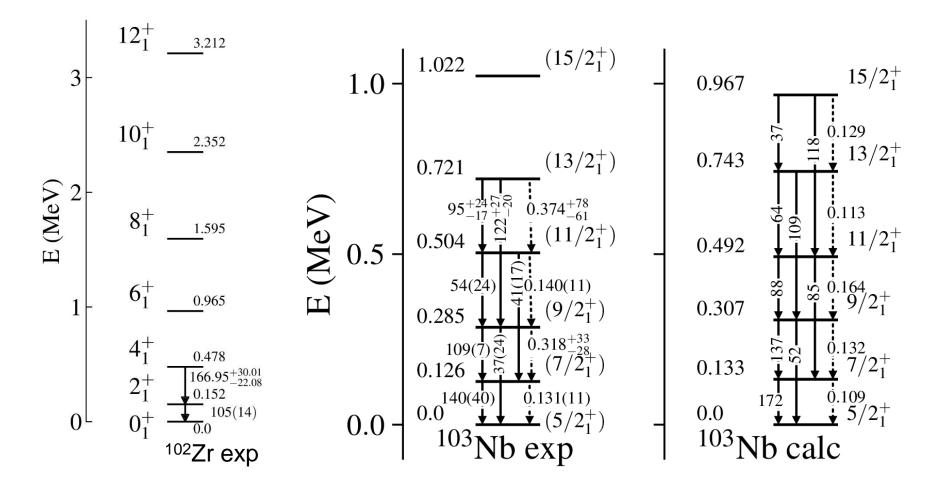


⁹³Nb Weak coupling (WC)

 $\begin{array}{l} [(L=0^{+}_{1;A})\otimes\pi(1g_{9/2})] \ \ J=9/2^{+} \\ [(L=2^{+}_{1;A})\otimes\pi(1g_{9/2})] \ \ J=5/2^{+},\ 7/2^{+},\ 9/2^{+},\ 11/2^{+},\ 13/2^{+} \\ [(L=4^{+}_{1;A})\otimes\pi(1g_{9/2})] \ \ J=1/2^{+},\ 3/2^{+},\ 5/2^{+},\ 7/2^{+},\ 9/2^{+},\ 11/2^{+},\ 13/2^{+},\ 15/2^{+} \end{array} \right. \\ \end{array} \\ \begin{array}{l} \text{normal WC multiplets} \\ \end{array}$

$$\begin{array}{l} [(L=0^{+}_{2;B}) \otimes \pi(1g_{9/2})] \quad J=9/2^{+} \\ [(L=2^{+}_{2;B}) \otimes \pi(1g_{9/2})] \quad J=5/2^{+}, \, 7/2^{+}, \, 9/2^{+}, \, 11/2^{+}, 13/2^{+} \end{array}$$

Intruder WC multiplets



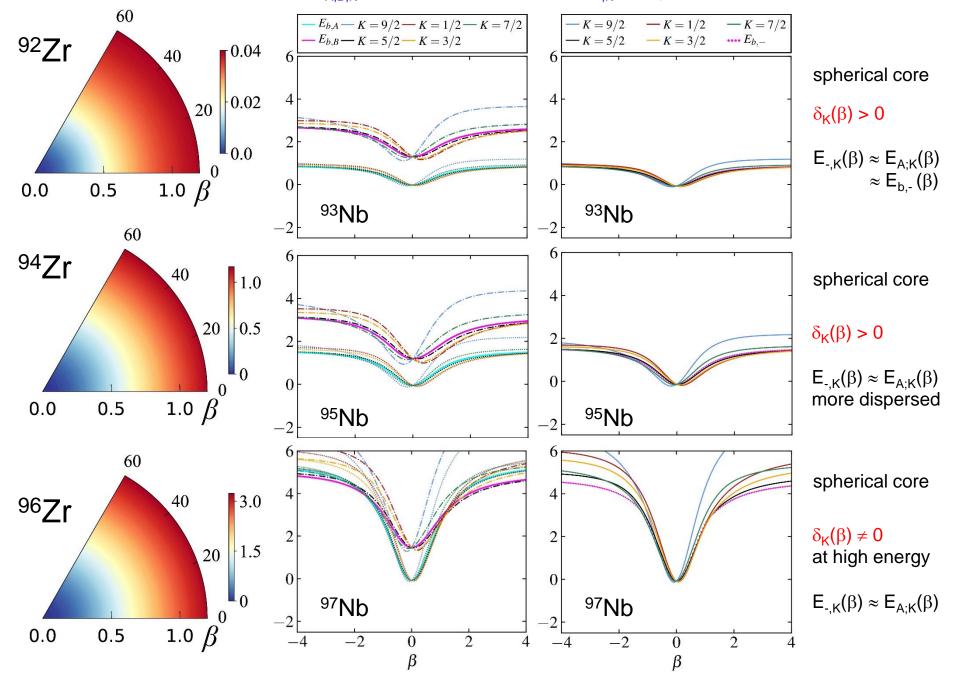
¹⁰³Nb Strong coupling 5/2+[422]

[(L=0+_{1;B} , 2+_{1;B} , 4+_{1;B} , 6+_{1;B} ...) \otimes $\pi(1g_{9/2})\,$] J

$$\begin{split} \text{IBFM} \\ \hat{H}(\xi) &= \hat{H}_{b} + \hat{H}_{l} + \hat{V}_{bf} \\ \text{Matrix} \quad \Omega_{N}(\beta, \gamma; \xi) : \text{Basis: } |j, m; \beta, \gamma; N\rangle = |j, m\rangle \otimes |\beta, \gamma; N\rangle \qquad |j, m\rangle = a_{jm}^{\dagger}|0\rangle \\ \text{IBFM-CM} \qquad |\beta, \gamma; N\rangle = (N!)^{-1/2} (b_{l}^{\dagger})^{N}|0\rangle \\ \hat{H}(\xi_{A}, \xi_{B}, \omega) &= \begin{bmatrix} \hat{H}_{A}(\xi_{A}) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_{B}(\xi_{B}) \end{bmatrix} \\ N(\beta, \gamma; \xi_{A}, \xi_{B}, \omega) &= \begin{bmatrix} \Omega_{A}(\beta, \gamma; \xi_{A}) & \Omega_{AB}(\beta, \gamma; \omega) \\ \Omega_{AB}(\beta, \gamma; \omega) & \Omega_{B}(\beta, \gamma; \xi_{B}) \end{bmatrix} |j, m_{1}; \beta, \gamma; N\rangle , |j, m_{2}; \beta, \gamma; N+2\rangle \\ \gamma &= \mathbf{0} \qquad \Omega_{N}(\beta; \xi_{A}, \xi_{B}, \omega) = \{M_{K=j}(\beta), M_{K=j-2}(\beta), \dots, M_{K=-(j-1)}(\beta)\} \text{ block-diagonal} \\ M_{K}(\beta) &= \begin{bmatrix} E_{A;K}(\beta) & W(\beta) \\ W(\beta) & E_{B;K}(\beta) \end{bmatrix} . \qquad |\Psi_{A;K}\rangle \equiv |j, K; \beta; N\rangle , |\Psi_{B;K}\rangle \equiv |j, K; \beta; N+2\rangle \\ \hline \delta_{K}(\beta) &= E_{B;K}(\beta) - E_{A;K}(\beta) \\ \text{ unmixed surfaces} \\ R_{K}(\beta) &= \frac{\delta_{K}(\beta)}{2W(\beta)} \\ E_{\pm,\kappa}(\beta) &= \frac{1}{2} [E_{A;K}(\beta) + E_{B;K}(\beta)] \pm |W(\beta)| \sqrt{1 + [R_{K}(\beta)]^{2}} \\ |\Psi_{-,K}(\beta)\rangle &= -b |\Psi_{A;K}\rangle + a |\Psi_{B;K}\rangle \end{cases} a^{2} + b^{2} = 1 \\ b^{2} = \frac{1}{1 + \left[R_{K}(\beta) \pm \sqrt{1 + [R_{K}(\beta)]^{2}} \right]^{2}} \end{split}$$

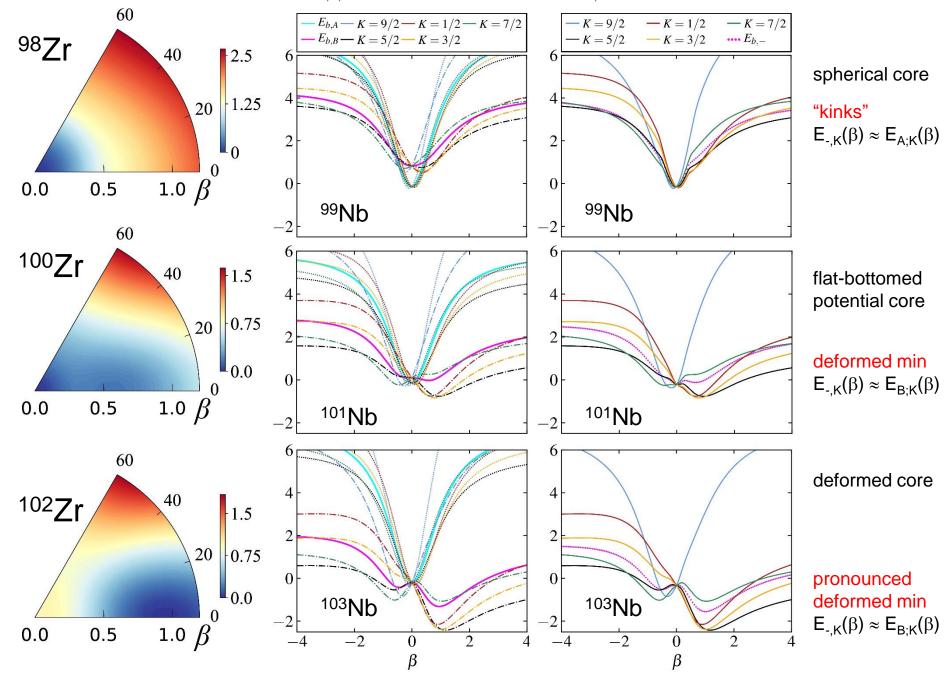
 $\mathsf{E}_{\mathsf{A},\mathsf{B};\mathsf{K}}(\beta)$ unmixed surfaces

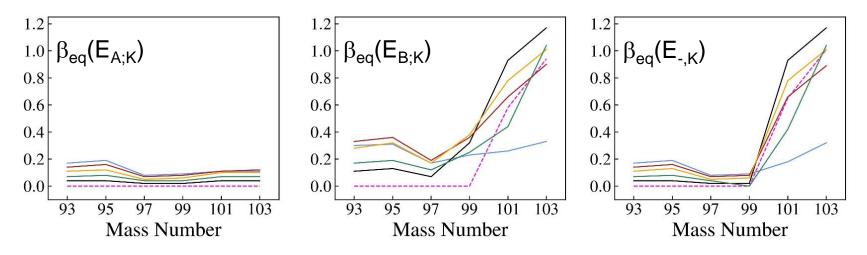
 $E_{-\kappa}(\beta)$ eigen-potentials



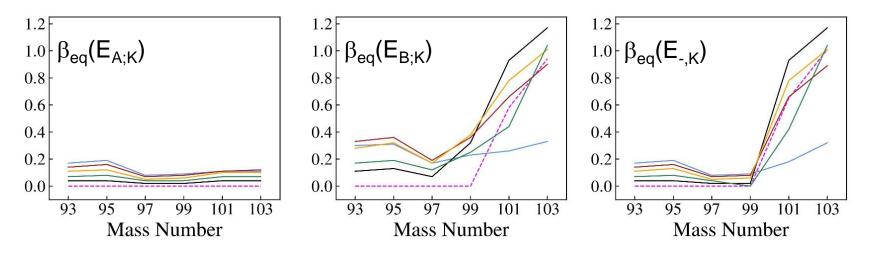
$E_{A,B;K}(\beta)$ unmixed surfaces

$E_{-,K}(\beta)$ eigen-potentials





- Equilibrium deformations (order parameters)
 - Normal A configuration remains spherical along the Nb chain $(\beta_{eq}(E_{A:K})$ small)
 - Intruder B configuration changes gradually from weakly deformed in ⁹³Nb to strongly deformed in ¹⁰³Nb ($\beta_{eq}(E_{B;K})$) large)
 - $\beta_{eq}(E_{-,K}) \approx \beta_{eq}(E_{A;K})$ for ${}^{93,95,97,99}Nb$ and $\beta_{eq}(E_{-,K}) \approx \beta_{eq}(E_{B;K})$ for ${}^{101,103}Nb$

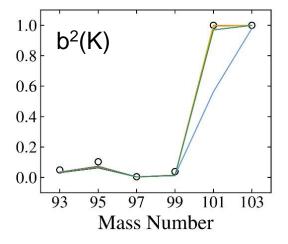


Equilibrium deformations (order parameters)

- Normal A configuration remains spherical along the Nb chain $(\beta_{eq}(E_{A;K})$ small)
- Intruder B configuration changes gradually from weakly deformed in ⁹³Nb to strongly deformed in ¹⁰³Nb ($\beta_{eq}(E_{B:K})$) large)
- $\beta_{eq}(E_{-,K}) \approx \beta_{eq}(E_{A;K})$ for ^{93,95,97,99}Nb and $\beta_{eq}(E_{-,K}) \approx \beta_{eq}(E_{B;K})$ for ^{101,103}Nb
- Probability (b²) of intruder component in $|\Psi_{\text{-},\text{K}}\left(eta
 ight)
 angle$

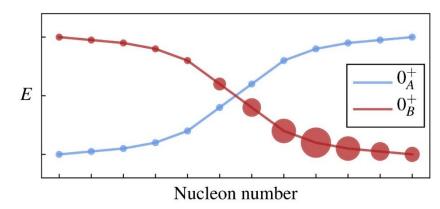
Rapid change in structure from normal configuration in ${}^{93,95,97,99}Nb$ (small b^2) to intruder configuration in ${}^{101,103}Nb$ (large b^2)

Classical analysis confirms the scenario of intertwined QPTs



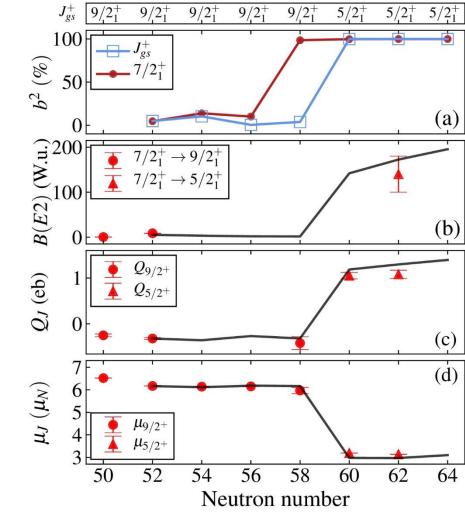
Concluding remarks

Intertwined Quantum Phase Transitions (IQPTs)



- IBFM-CM framework Quantitative description of configuration mixing and related QPTs in odd-mass nuclei
- Nb isotopes Zr core + single-j fermion (Normal A configuration) $\otimes \pi(1g_{9/2})$ (Intruder B configuration) $\otimes \pi(1g_{9/2})$
- Detailed quantum and classical analysis discloses

 Type II QPT (abrupt crossing of normal and intruder states) accompanied by
 a Type I QPT (gradual shape evolution and transition from weak to strong coupling
 within the Intruder configuration), thus demonstrating IQPTs in odd-mass nuclei
- The observed IQPTs in odd-A Nb isotopes echo the IQPTs previously found in the adjacent even-even Zr isotopes



Gavrielov, Leviatan, Iachello, PRC **105**, 014305 (2022) PRC **106**, L051304 (2022) Leviatan, Gavrielov (2025)

Thank you