Ab-initio nuclear response functions with quantum (inspired) algorithms

Alessandro Roggero

Ischia – 22 May, 2025

The need for ab-initio many-body dynamics in NP

- ν scattering for supernovae explosion and NS cooling
- capture reactions for crust heating and nucleosynthesis

- cross sections for dark-matter discovery and neutrino physics
- transport properties of neutron star matter for X-ray emission

Alessandro Roggero

Nuclear response

Ischia - 22 May, 2025

1/13

Inclusive cross section and the response function

• cross section determined by the response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

 \bullet excitation operator \hat{O} specifies the vertex

Inclusive cross section and the response function

• cross section determined by the response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

• excitation operator \hat{O} specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

(see also F.Marino's and G.King's talks)

Alessanc	Iro b	arde	ro
710354110		Uggu	
		00	

Many body dynamics with Integral Transforms

A possible way out with integral transform techniques

Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

$$T(\sigma) = \int d\omega K(\sigma, \omega) R_O(\omega) = \langle 0 | \hat{O}^{\dagger} K \left(\sigma, \hat{H} - E_0 \right) \hat{O} | 0 \rangle$$

PROBLEM: the inversion procedure is often ill-posed, difficult to assign error bars on the reconstructed response function

Alessandro Rogger	0
-------------------	---

Many body dynamics with Integral Transforms II

A possible way out with integral transform techniques

Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

$$T(\sigma) = \int d\omega K(\sigma, \omega) R_O(\omega) = \langle 0 | \hat{O}^{\dagger} K \left(\sigma, \hat{H} - E_0 \right) \hat{O} | 0 \rangle$$

 $\begin{array}{l} \mbox{Fourier} \\ K(\sigma,\omega) = e^{-i\sigma\omega} \end{array}$

$$T(\sigma) = \langle 0|\hat{O}^{\dagger} \exp\left(-i\sigma(\hat{H} - E_0)\right)\hat{O}|0\rangle = \langle 0|\hat{O}^{\dagger}(\sigma)\hat{O}(0)|0\rangle$$

The transformation is unitary so the inversion is "easy"

Many body dynamics with Integral Transforms II

A possible way out with integral transform techniques

Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

$$T(\sigma) = \int d\omega K(\sigma, \omega) R_O(\omega) = \langle 0 | \hat{O}^{\dagger} K \left(\sigma, \hat{H} - E_0 \right) \hat{O} | 0 \rangle$$

 $\begin{array}{l} \mbox{Fourier} \\ K(\sigma,\omega) = e^{-i\sigma\omega} \end{array}$

$$T(\sigma) = \langle 0|\hat{O}^{\dagger} \exp\left(-i\sigma(\hat{H} - E_0)\right)\hat{O}|0\rangle = \langle 0|\hat{O}^{\dagger}(\sigma)\hat{O}(0)|0\rangle$$

The transformation is unitary so the inversion is "easy"

PROBLEM: we don't really have efficient and unbiased methods to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!

Many body dynamics with Integral Transforms II

A possible way out with integral transform techniques

Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

$$T(\sigma) = \int d\omega K(\sigma, \omega) R_O(\omega) = \langle 0 | \hat{O}^{\dagger} K \left(\sigma, \hat{H} - E_0 \right) \hat{O} | 0 \rangle$$

 $\begin{array}{l} \mbox{Fourier} \\ K(\sigma,\omega) = e^{-i\sigma\omega} \end{array}$

$$T(\sigma) = \langle 0|\hat{O}^{\dagger} \exp\left(-i\sigma(\hat{H} - E_0)\right)\hat{O}|0\rangle = \langle 0|\hat{O}^{\dagger}(\sigma)\hat{O}(0)|0\rangle$$

The transformation is unitary so the inversion is "easy"

PROBLEM: we don't really have efficient and unbiased classical methods to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!

Simulations of nuclear dynamics

Classical simulations

Quantum simulations

several talks in Ischia: D. Lacroix, J. Menendez, E. Costa

Alessandro Roggero

Nuclear response

Simulations of nuclear dynamics

several talks in Ischia: D. Lacroix, J. Menendez, E. Costa, C. Johnson

Alessandro Roggero

Nuclear response

Inclusive cross section from QC

For inclusive scattering seems reasonable to get real-time correlators

$$R_O(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Inclusive cross section from QC

For inclusive scattering seems reasonable to get real-time correlators

$$R_O(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Turns out it is much more convenient to compute moments

Somma(2019), AR et al.(2020), AR(2020), Rall(2020), Baroni et al.(2021), AR&Sobczyk(2022), Kiss et al.(2023)

$$M_F(t) = \langle \Psi_0 | Oe^{-itH} O | \Psi_0 \rangle \qquad \qquad M_C(n) = \langle \Psi_0 | O\mathsf{T}_n(H) O | \Psi_0 \rangle$$

• Chebyshev Polynomials T_n appear naturally (see also S. Wang's talk)

$$f(H) \left| \Phi \right\rangle = \sum_{n=0}^{\infty} c_k \mathsf{T}_n(H) \left| \Phi \right\rangle \approx \sum_{n=0}^{M} c_k \mathsf{T}_n(H) \left| \Phi \right\rangle$$

• Very popular recently for early fault-tolerant ground state energy estimation (and preparation) [Lin & Tong (2022), Dong et al. (2022), Wan et al. (2022)]

Quantum inspired simulation of reactions

Since we want Chebyshev moments, why not get them classically instead?

Orthogonal polynomials satisfy recurrence relations, for Chebyshev

$$\mathsf{T}_0(H) = 1 \quad \mathsf{T}_1(H) = H \quad \Rightarrow \quad \mathsf{T}_{n+1}(H) = 2H\mathsf{T}_n(H) - \mathsf{T}_{n-1}(H)$$

To get Chebyshev moments we need a many-body method such that • we can prepare a good approximation to the ground state $|\Psi_0\rangle$ • we can apply the Hamiltonian efficiently

$$\begin{split} |\phi_0\rangle = |\Psi_0\rangle \quad |\phi_1\rangle = H \, |\Psi_0\rangle \\ |\phi_n\rangle \quad \rightarrow \quad |\phi_{n+1}\rangle = 2H \, |\phi_n\rangle - |\phi_{n-1}\rangle \end{split}$$

• we can take overlaps efficiently $m_k = \langle \phi_0 | \phi_k
angle = \langle \phi_k | \phi_0
angle$

Once we have the moments, all the post processing is carried out as if we obtained them from a quantum computer

Alessandro Roggero

Nuclear response

7/13

Quantum inspired simulation of reactions with CC-theory

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

Coupled-cluster theory allows for accurate nuclear ground states to be prepared efficiently. We can use EOM-CC to study excited-states/moments

$$|\Psi_0\rangle = e^T |HF\rangle \qquad \langle \widetilde{\Psi}_0| = \langle HF|(1+\Lambda)e^{-T}$$

the natural construction uses a similarity transformed Hamiltonian

 $\overline{H} = e^{-T}He^{T}$ in CCSD operator T contains 1p1h and 2p2h

Quantum inspired simulation of reactions with CC-theory

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

Coupled-cluster theory allows for accurate nuclear ground states to be prepared efficiently. We can use EOM-CC to study excited-states/moments

$$|\Psi_0\rangle = e^T |HF\rangle \qquad \langle \widetilde{\Psi}_0| = \langle HF|(1+\Lambda)e^{-T}$$

the natural construction uses a similarity transformed Hamiltonian

 $\overline{H} = e^{-T}He^{T}$ in CCSD operator T contains 1p1h and 2p2h Within EOM the excited states are parametrized as

$$\left|\phi_{n+1}\right\rangle = 2\overline{H}\left|\phi_{n}\right\rangle - \left|\phi_{n-1}\right\rangle = \mathcal{R}_{n}\left|\Psi_{0}\right\rangle$$

Once we collected the parameters of \mathcal{R}_n we can get moments as

$$m_k = \langle \widetilde{\Psi}_0 | \phi_k \rangle$$

Reasonably similar to the LIT-CC method (see F.Marino's talk)

Spin response of bulk neutron matter

Dynamic spin structure factor
$$S_{\sigma}(\vec{q},\omega) \propto \int dt e^{i\omega t} \langle \vec{s}(t,\vec{q}) \cdot \vec{s}(0,\vec{q}) \rangle$$

 νN scattering and ν pair-production emissivity dominated by $S_{\sigma}(\vec{q},\omega)$ for small wave-lenghts $|\vec{q}|\to 0$

Spin response of bulk neutron matter

Dynamic spin structure factor $S_{\sigma}(\vec{q},\omega) \propto \int dt e^{i\omega t} \langle \vec{s}(t,\vec{q}) \cdot \vec{s}(0,\vec{q}) \rangle$

 νN scattering and ν pair-production emissivity dominated by $S_{\sigma}(\vec{q},\omega)$ for small wave-lenghts $|\vec{q}| \rightarrow 0$

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

With EOM-CC we can get a reasonably good approximation of m_k in a very efficient way: 5k moments for N = 114 particles in ≈ 7 k CPU hours

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

With EOM-CC we can get a reasonably good approximation of m_k in a very efficient way: 5k moments for N = 114 particles in $\approx 7k$ CPU hours

First ab-initio calculation of the frequency dependent spin response of neutron matter with **controllable errors**

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

With EOM-CC we can get a reasonably good approximation of m_k in a very efficient way: 5k moments for N = 114 particles in $\approx 7k$ CPU hours

First ab-initio calculation of the frequency dependent spin response of neutron matter with **controllable errors**

Sobczyk & Roggero (2022), Sobczyk, Jiang, Roggero (2025)

With EOM-CC we can get a reasonably good approximation of them in a very efficient way: 5k moments for N = 114 particles in $\approx 7k$ CPU hours

First ab-initio calculation of the frequency dependent spin response of neutron matter with **controllable errors**

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIMC

• energy per particle has negligible dependence on method/model

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIMC

- energy per particle has negligible dependence on method/model
- large impact on sum rule!

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIMC

- energy per particle has negligible dependence on method/model
- large impact on sum rule!

Small effect in going NNLO

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIMC

- energy per particle has negligible dependence on method/model
- large impact on sum rule!

- Small effect in going NNLO
- FHNC+AV6 looks similar

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIM

- energy per particle has negligible dependence on method/model
- large impact on sum rule!

- Small effect in going NNLO
- FHNC+AV6 looks similar
- AFDMC+AV8 not at all

Despite being a low energy observable, important interaction dependence

We tested three different Chiral potentials at LO using CC and CIM

- energy per particle has negligible dependence on method/model
- large impact on sum rule!

- Small effect in going NNLO
- FHNC+AV6 looks similar
- AFDMC+AV8 not at all

What is the value of $\langle S^2 \rangle$ in zero temperature neutron matter?

Summary and perspective

- ab-initio treatement of nuclear dynamics is important for both terrestrial experiments and extreme astrophysical sites
- incredible recent progress especially for static nuclear properties but new tools might be needed for some dynamical processes
- quantum computing is a strong candidate to considerably improve our simulations of nuclear physics, especially dynamical properties
- some of the techniques developed for use on future large scale quantum computers can be employed now on classical HPC!
- calculation of spin response shows important interaction/method dependence: neutron matter around ρ_0 not boring anymore!

Summary and perspective

- ab-initio treatement of nuclear dynamics is important for both terrestrial experiments and extreme astrophysical sites
- incredible recent progress especially for static nuclear properties but new tools might be needed for some dynamical processes
- quantum computing is a strong candidate to considerably improve our simulations of nuclear physics, especially dynamical properties
- some of the techniques developed for use on future large scale quantum computers can be employed now on classical HPC!
- calculation of spin response shows important interaction/method dependence: neutron matter around ρ_0 not boring anymore!

Thanks to my collaborators

- J. Sobczyk (Mainz \rightarrow Chalmers)
- W. Jiang (Mainz)

Finite size systematics

We use TABC to minimize finite size effects. This works well for sum rules but residual N dependence in the density of states (and thus the response)

Clustering can be explained as a shell effect: at fixed density $\rho = N/L^3$ so the free single particle energies are $E_n \propto n(2\pi/L)^2$

